1
|
Doke R, Lamkhade GJ, Vinchurkar K, Singh S. Demystifying the Role of Neuroinflammatory Mediators as Biomarkers for Diagnosis, Prognosis, and Treatment of Alzheimer's Disease: A Review. ACS Pharmacol Transl Sci 2024; 7:2987-3003. [PMID: 39416969 PMCID: PMC11475310 DOI: 10.1021/acsptsci.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Neuroinflammatory mediators play a pivotal role in the pathogenesis of Alzheimer's Disease (AD), influencing its onset, progression, and severity. The precise mechanisms behind AD are still not fully understood, leading current treatments to focus mainly on managing symptoms rather than preventing or curing the condition. The amyloid and tau hypotheses are the most widely accepted explanations for AD pathology; however, they do not completely account for the neuronal degeneration observed in AD. Growing evidence underscores the crucial role of neuroinflammation in the pathology of AD. The neuroinflammatory hypothesis presents a promising new approach to understanding the mechanisms driving AD. This review examines the importance of neuroinflammatory biomarkers in the diagnosis, prognosis, and treatment of AD. It delves into the mechanisms underlying neuroinflammation in AD, highlighting the involvement of various mediators such as cytokines, chemokines, and ROS. Additionally, this review discusses the potential of neuroinflammatory biomarkers as diagnostic tools, prognostic indicators, and therapeutic targets for AD management. By understanding the intricate interplay between neuroinflammation and AD pathology, this review aims to help in the development of efficient diagnostic and treatment plans to fight this debilitating neurological condition. Furthermore, it elaborates recent advancements in neuroimaging techniques and biofluid analysis for the identification and monitoring of neuroinflammatory biomarkers in AD patients.
Collapse
Affiliation(s)
- Rohit
R. Doke
- Jaihind
College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra 412401, India
| | | | - Kuldeep Vinchurkar
- Krishna
School of Pharmacy, Kiran and Pallavi Patel
Global University, Vadodara, Gujarat 391243, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chaing Mai 50200, Thailand
- Faculty
of Pharmacy, Chiang Mai University, Chaing Mai 50200, Thailand
| |
Collapse
|
2
|
Xu S, Huang CH, Eyermann C, Georgakis GV, Turkman N. Design and radiosynthesis of class-IIa HDAC inhibitor with high molar activity via repositioning the 18F-radiolabel. Sci Rep 2024; 14:15100. [PMID: 38956204 PMCID: PMC11219833 DOI: 10.1038/s41598-024-65668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.
Collapse
Affiliation(s)
- Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher Eyermann
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA.
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Huang CH, Khan P, Xu S, Cohen J, Georgakis GV, Turkman N. Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging. Int J Mol Sci 2024; 25:6870. [PMID: 38999983 PMCID: PMC11241330 DOI: 10.3390/ijms25136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.
Collapse
Affiliation(s)
- Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Long Island, NY 11794, USA
| | - Palwasha Khan
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Jules Cohen
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Medicine, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Long Island, NY 11794, USA
| |
Collapse
|
4
|
Lindsley C, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. ACS Pharmacol Transl Sci 2024; 7:1-7. [PMID: 38230278 PMCID: PMC10789131 DOI: 10.1021/acsptsci.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Craig
W. Lindsley
- Department
of Pharmacology, Department of Chemistry, and Vanderbilt Institute
of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E. Müller
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical
Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
5
|
Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. J Med Chem 2023; 66:16457-16463. [PMID: 38109062 DOI: 10.1021/acs.jmedchem.3c02281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Craig W Lindsley
- Department of Pharmacology, Department of Chemistry, and Vanderbilt Institute of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|