1
|
Rosen HT, Li K, Li EL, Currier B, Brittain SM, Garcia FJ, Beard DC, Haenni-Holzinger S, Dovala D, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Sulfinyl Aziridines as Stereoselective Covalent Destabilizing Degraders of the Oncogenic Transcription Factor MYC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639755. [PMID: 40060528 PMCID: PMC11888305 DOI: 10.1101/2025.02.24.639755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
While MYC is a significant oncogenic transcription factor driver of cancer, directly targeting MYC has remained challenging due to its intrinsic disorder and poorly defined structure, deeming it "undruggable." Whether transient pockets formed within intrinsically disordered and unstructured regions of proteins can be selectively targeted with small molecules remains an outstanding challenge. Here, we developed a bespoke stereochemically-paired spirocyclic oxindole aziridine covalent library and screened this library for degradation of MYC. Through this screen, we identified a hit covalent ligand KL2-236, bearing a unique sulfinyl aziridine warhead, that engaged MYC in vitro as pure MYC/MAX protein complex and in situ in cancer cells to destabilize MYC, inhibit MYC transcriptional activity and degrade MYC in a proteasome-dependent manner through targeting intrinsically disordered C203 and D205 residues. Notably, this reactivity was most pronounced for specific stereoisomers of KL2-236 with a diastereomer KL4-019 that was largely inactive. Mutagenesis of both C203 and D205 completely attenuated KL2-236-mediated MYC degradation. We have also optimized our initial KL2-236 hit compound to generate a more durable MYC degrader KL4-219A in cancer cells. Our results reveal a novel ligandable site within MYC and indicate that certain intrinsically disordered regions within high-value protein targets, such as MYC, can be interrogated by isomerically unique chiral small molecules, leading to destabilization and degradation.
Collapse
Affiliation(s)
- Hannah T. Rosen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Kelvin Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Brynne Currier
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Scott M. Brittain
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Francisco J. Garcia
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Diana C. Beard
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Sandra Haenni-Holzinger
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Dustin Dovala
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Jeffrey M. McKenna
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Markus Schirle
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| |
Collapse
|
2
|
Ding B, Lu L, Hu J, Zhang R, Wang F, Zhou Z, Lin Y, Pan C, Zhou Y, Yang B, Zhu CL, Zhou C, Cao J. Identification and validation of WDR5 WIN-site ligands via DNA-encoded chemical library screening. Bioorg Chem 2025; 154:107948. [PMID: 39616835 DOI: 10.1016/j.bioorg.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025]
Abstract
WD repeat-containing protein 5 (WDR5) is a scaffolding protein involved in critical protein-protein interactions and a promising target for therapeutic development. Novel small-molecule ligands targeting WDR5 were identified using the DELopen platform, a free-access DNA-encoded chemical library (DEL) for academic research. Through off-DNA structure-activity relationship studies and photoaffinity labeling, two promising initial leads, DBL-6-13 and DBL-6-33, were identified as new binders of WDR5. These compounds exhibited moderate to good binding affinities and were confirmed to bind the WIN-site through co-crystal structure analysis. Our findings demonstrate the utility of DEL technology in identifying ligands for challenging targets like WDR5, particularly within an academic research setting using the DELopen platform. The identified WDR5 ligands offer a foundation for further optimization and exploration as chemical probes for WDR5 research.
Collapse
Affiliation(s)
- Baoli Ding
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li Lu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiawen Hu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rongtian Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Feifan Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhesheng Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yushen Lin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chenghao Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China
| | - Yihui Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, PR China; School of Medicine, Hangzhou City University, Hangzhou 310015, PR China
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, PR China.
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Wang H, Zhou Y, Lu L, Cen J, Wu Z, Yang B, Zhu C, Cao J, Yu Y, Chen W. Identification of 5-Thiocyanatothiazol-2-amines Disrupting WDR5-MYC Protein-Protein Interactions. ACS Med Chem Lett 2024; 15:1143-1150. [PMID: 39015274 PMCID: PMC11247650 DOI: 10.1021/acsmedchemlett.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
MYC amplification is frequently observed in approximately 50% of human cancers, rendering it a highly desired anticancer target. Given the challenge of direct pharmacological inhibiting of MYC, impairing the interaction of MYC and its key cofactor WDR5 has been proposed as a promising strategy for MYC-driven cancer treatment. Herein, we report the discovery of 5-thiocyanatothiazol-2-amines that disrupt the WDR5-MYC interaction. Hit fragments were initially identified in a fluorescence polarization (FP)-based screening of an in-house library, and structural-activity relationship exploration resulted in the lead compounds 4m and 4o with potent inhibitory activities on WDR5-MYC interaction (K i = 2.4 μM for 4m; K i = 1.0 μM for 4o). These compounds were further validated via differential scanning fluorimetry (DSF) and coimmunoprecipitation (Co-IP). Moreover, 4m and 4o exhibited good cellular activities with the IC50 values at the micromolar level (IC50 = 0.71-7.40 μM) against multiple MYC-driven cancer cell lines. Our findings afforded a potential small molecule blocking the WDR5-MYC interaction.
Collapse
Affiliation(s)
- Haiyang Wang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihui Zhou
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Department
of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Lu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Cen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenying Wu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
| | - Chengliang Zhu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Drug Safety Evaluation and Research of ZJU, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou City 310058, China
| | - Ji Cao
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Yongping Yu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- School
of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Wenteng Chen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
4
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
6
|
Shen L, Fang J, Liu L, Yang F, Jenkins JL, Kutchukian PS, Wang H. Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery. J Cheminform 2024; 16:33. [PMID: 38515171 PMCID: PMC10958880 DOI: 10.1186/s13321-024-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, followed by filters for chemical-physical properties and drug-likeness, structure-activity relationship analysis, and clustering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimentally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discovery for hit identification.
Collapse
Affiliation(s)
- Lingling Shen
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| | - Jian Fang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Lulu Liu
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Fei Yang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | | | - He Wang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Chang JY, Neugebauer C, Mues Genannt Koers A, 't Hart P. Small molecule WDR5 inhibitors down-regulate lncRNA expression. RSC Med Chem 2024; 15:636-640. [PMID: 38389889 PMCID: PMC10880924 DOI: 10.1039/d3md00605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
WD repeat domain 5 (WDR5) plays an important role as a scaffold protein in both protein-protein and RNA-protein complexes involved in epigenetic gene regulation. In particular, some of these lncRNAs were reported to regulate the expression of genes in cis as well as themselves through binding WDR5. In this report, we investigate the two known binding sites of WDR5 in relation to lncRNA binding and expression. The WBM binding site mediates both protein-protein and lncRNA-protein interactions while the WIN site, which is on the opposite side of the protein, is only known to mediate protein-protein interactions. To dissect the function of different binding sites on WDR5, we characterized them with selective peptide ligands using fluorescence polarization and used these to demonstrate the selectivity of small molecule inhibitors of these two major binding sites. RNA immunoprecipitation experiments were performed to show that lncRNA-WDR5 complex formation could be interrupted using a WBM site inhibitor. Finally, we demonstrated that WDR5 regulated lncRNAs are down regulated with different sensitivity toward the corresponding inhibitors, demonstrating the potential of targeting lncRNA-protein interactions to reduce oncogenic lncRNA expression.
Collapse
Affiliation(s)
- Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Cora Neugebauer
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Anne Mues Genannt Koers
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
8
|
Nagar A, Dubey A, Sharma A, Singh M. Exploring promising natural compounds for breast cancer treatment: in silico molecular docking targeting WDR5-MYC protein interaction. J Biomol Struct Dyn 2024:1-15. [PMID: 38356140 DOI: 10.1080/07391102.2024.2317975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.
Collapse
Affiliation(s)
- Amka Nagar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| |
Collapse
|
9
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|