1
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
2
|
Zhang J, Wang W, Huang S, Lv Y, Li M, Wu M, Wang H. Metal-free photocatalyst with reduced graphene oxide-doped graphitic carbon nitride homojunctions for efficient antibacterial applications. RSC Adv 2025; 15:2444-2451. [PMID: 39867327 PMCID: PMC11758216 DOI: 10.1039/d4ra07829b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability. In this study, a graphitic carbon nitride (g-C3N4) homojunction was synthesized, with reduced graphene oxide (RGO) incorporated to suppress the rapid recombination of photocarriers. The resulting composites demonstrated significantly enhanced photocatalytic antibacterial activity compared to original g-C3N4. The improvement is due to the critical role of RGO, which not only facilitates efficient electron transport but also introduces sharp edges that mechanically disrupt bacterial cell membranes. The experimental results demonstrated that the composite exhibited a bactericidal efficiency of 99.92% against Escherichia coli and 99.85% against Staphylococcus aureus within 180 minutes, highlighting its potential for practical antibacterial applications.
Collapse
Affiliation(s)
- Junyan Zhang
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Weikun Wang
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Shiyue Huang
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Yijie Lv
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Meilan Li
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Mingliang Wu
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| | - Haiyang Wang
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
| |
Collapse
|
3
|
Adak A, Castelletto V, de Mello L, Mendes B, Barrett G, Seitsonen J, Hamley IW. Effect of Chirality and Amphiphilicity on the Antimicrobial Activity of Tripodal Lysine-Based Peptides. ACS APPLIED BIO MATERIALS 2025; 8:803-813. [PMID: 39792083 PMCID: PMC11752523 DOI: 10.1021/acsabm.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)3K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)3K, and heterochiral analogues containing k (d-Lys), (kkY)3K and Fmoc-(kkY)3K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM). In cell viability assays using fibroblast cell lines, the tripodal peptides without Fmoc were observed to be noncytotoxic over the concentration range studied, and the Fmoc functionalized tripodal peptides were only cytotoxic at the highest concentrations (above the critical aggregation concentration of the lipopeptides). The molecules also show good hemocompatibility at sufficiently low concentration, and antimicrobial activity was assessed via MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) assays. These revealed that the Fmoc-functionalized tripodal peptides had significant activity against both Gram-negative and Gram-positive bacteria, and in the case of Gram-positive Staphylococcus aureus, the antimicrobial activity for Fmoc-(kkY)3K was improved compared to polymyxin B. The mechanism of the antimicrobial assay was found to involve rupture of the bacterial membrane as evident from fluorescence microscopy live/dead cell assays, and scanning electron microscopy images.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Lucas de Mello
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
4
|
Sun Y, Li X, Wang Y, Shang X, Huang W, Ang S, Li D, Wong WL, Hong WD, Zhang K, Wu P. In vitro and in vivo evaluation of novel ursolic acid derivatives as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2025; 154:107986. [PMID: 39615282 DOI: 10.1016/j.bioorg.2024.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 01/15/2025]
Abstract
The misuse and abuse of antibiotics have led to the increase of drug resistance and the emergence of multi-drug resistant bacteria. Therefore, it is an urgent need to develop novel antimicrobial agents to address this problem. Natural products (NPs) could provide an effective strategy for the discovery of drug due to their wide range of source and biological activities. Ursolic acid (UA) is a naturally occurring compound known for its wide range of biological properties. In this study, a series of UA derivatives were rationally designed and synthesized by incorporating antibacterial potential fragments of benzenesulfonamide and indole, with the aim of obtaining novel UA derivatives for the treatment of bacterial infections. Based on the preliminary screening, UA derivatives 27 (yield of 26 %), containing 4-chlorobenzenesulfonamide and 6-carboxyindole pharmacophores, as well as 34 (yield of 42 %), containing 4-carboxybenzenesulfonamide and unsubstituted indole pharmacophores, were identified as promising antibacterial agents against Staphylococcus aureus, especially for methicillin-resistant Staphylococcus aureus (MRSA), possessing MICs of 1 μM. Furthermore, both of them also displayed low hemolytic activity, non-resistance, and low-toxicity to mammalian cells. In addition, further mechanistic studies revealed that 27 and 34 were able to inhibit and eliminate MRSA biofilm formation, affecting the permeability of bacterial cell membrane, leading to increase intracellular reactive oxygen species (ROS) and ultimately inducing bacterial death. Notably, 27 and 34 also showed promising in vivo efficacy against MRSA in a mouse wound model. These results suggested that 27 and 34 should have promising applications against MRSA infection.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Dongli Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | - Kun Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
5
|
Mukherjee D, Sen S, Jana A, Ghosh S, Jash M, Singh M, Ghosh S, Mukherjee N, Roy R, Dey T, Manoharan S, Ghosh S, Sarkar J. Emergence of an unconventional Enterobacter cloacae-derived Iturin A C-15 as a potential therapeutic agent against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2024; 207:20. [PMID: 39738879 DOI: 10.1007/s00203-024-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis. The presence of the Iturin A biosynthetic gene cluster was confirmed using gene-specific polymerase chain reaction and the biocompatibility of the purified product was assessed on HEK-293, WI38, and human RBCs. The potential of SS1-3-P to bind to and destroy MRSA membranes was validated using molecular dynamics simulation along with membranolysis and membrane depolarization assays. Antimicrobial assays like growth curve analysis, field emission scanning electron microscopy, and ROS generation confirmed the efficacy of SS1-3-P against clinical MRSA. Furthermore, the antibiofilm and anti-virulence properties of SS1-3-P were studied meticulously. Studies on NIH/3T3 cell lines and a murine excisional wound model showed significant wound-healing attributes of the lipopeptide. These results highlight the potential of desert ecosystems in developing effective antimicrobial therapies against recalcitrant nosocomial pathogens like MRSA.
Collapse
Affiliation(s)
- Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Monika Singh
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Tamal Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Shankar Manoharan
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
6
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
7
|
Adak A, Castelletto V, Mendes B, Barrett G, Seitsonen J, Hamley IW. Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures. ACS APPLIED BIO MATERIALS 2024; 7:5553-5565. [PMID: 39042039 PMCID: PMC11337160 DOI: 10.1021/acsabm.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity. Here, a library of pH-responsive homochiral and heterochiral lipidated tripeptides has been designed. The designed lipopeptides comprise homochiral C16-YKK or C16-WKK (where all the amino acids are l-isomers), and two heterochiral conjugates C16-Ykk and C16-Wkk (where the two lysines are d-isomers). The self-assembly of all the synthesized lipopeptides in aqueous solution was examined using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Interestingly, it was observed that at acidic pH all the lipopeptides self-assemble into micelles, whereas at basic pH the homochiral lipopeptides self-assemble into nanofibers, whereas the heterochiral lipopeptides self-assemble into nanotapes and nanotubes. A pH switch was demonstrated using a thioflavin T fluorescence probe of β-sheet structure present in the extended structures at pH 8. We demonstrate that both chirality and pH in lipopeptides influence the self-assembly behavior of the model tripeptides, which also show promising bioactivity. Good cytocompatibility is observed in hemolytic assays and antimicrobial activity against both Gram-negative and Gram-positive bacteria is shown through the determination of minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values and live/dead bacteria staining assay.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
8
|
Chaudhary K, Agrahari B, Biswas B, Chatterjee N, Chaudhary A, Kumar A, Sonker H, Dewan S, Saxena D, Akhir A, Malhotra N, Chopra S, Misra S, Matheswaran S, Singh RG. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm. Adv Healthc Mater 2024; 13:e2400378. [PMID: 38621382 DOI: 10.1002/adhm.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Indexed: 04/17/2024]
Abstract
In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.
Collapse
Affiliation(s)
| | | | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | | | | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur, 208016, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nidhi Malhotra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Budh Nagar, 201314, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Santosh Misra
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | |
Collapse
|
9
|
Sen S, Ghosh S, Jana A, Jash M, Ghosh S, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Multi-Faceted Antimicrobial Efficacy of a Quinoline-Derived Bidentate Copper(II) Ligand Complex and Its Hydrogel Encapsulated Formulation in Methicillin-Resistant Staphylococcus aureus Inhibition and Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:4142-4161. [PMID: 38770768 DOI: 10.1021/acsabm.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The emergence of antimicrobial resistance, exemplified by methicillin-resistant Staphylococcus aureus (MRSA), poses a grave threat to public health globally. Over time, MRSA has evolved resistance to multiple antibiotics, challenging conventional treatment strategies. The relentless adaptability of MRSA underscores the urgent need for innovative and targeted antimicrobial approaches to combat this resilient pathogen. Ancient knowledge and practices, along with scientific evidence, have established that metallic copper, and its organic coordination complexes can act as potential antibacterial substances. In search of a smart and effective antimicrobial against MRSA, we designed, synthesized, and characterized a bidentate copper(II) ligand complex (SG-Cu) utilizing a comprehensive array of analytical techniques, including ESI-MS, elemental analysis, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and others. Antibacterial efficacy and mechanism of action of the complex were assessed through bacterial growth analyses, bacterial membrane perturbation assays, ROS elicitation assays, and field emission scanning electron microscopy. SG-Cu was found to maintain robust biocompatibility against the mammalian cell lines HEK-293, WI-38, and NIH/3T3. Remarkably, SG-Cu demonstrated significant biofilm disruptive tendency evidenced by the retardation of sliding motility, reduction in slime production, reduction in biofilm viability, and enhanced biofilm eradication, both in vitro and in urinary catheters. In vivo studies on murine excisional wounds, with SG-Cu impregnated in a palmitic acid conjugated NAVSIQ hexapeptide (PA-NV) hydrogel, revealed the sustained release of SG-Cu from the gel matrix, facilitating accelerated wound healing and effective wound disinfection. This multifaceted investigation highlights the potential of SG-Cu as a versatile option for combating MRSA infections and promoting wound healing, solidifying its claim to be developed into a viable therapeutic.
Collapse
Affiliation(s)
- Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
10
|
Ghosh S, Sen S, Jash M, Ghosh S, Jana A, Roy R, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Synergistic Augmentation of Beta-Lactams: Exploring Quinoline-Derived Amphipathic Small Molecules as Antimicrobial Potentiators against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:1267-1285. [PMID: 38442370 DOI: 10.1021/acsinfecdis.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
11
|
Ahmad A, Khan JM, Bandy A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024; 16:e58178. [PMID: 38741875 PMCID: PMC11089580 DOI: 10.7759/cureus.58178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
The sources of antimicrobial peptides (AMPs), also known as peptide-based antibiotics, are diverse, such as plants, animals, microorganisms including human leukocytes, saliva, human defense peptides, and human sweat. These natural sources provide a rich variety of AMPs with unique characteristics and potential therapeutic applications, including wound-healing and antimicrobial properties. AMPs derived from these sources have shown promise in combating a wide range of pathogens, making them valuable targets for further research and potential clinical applications. The design of AMPs for wound healing involves a meticulous process of structurally optimizing peptides to possess a unique combination of antibacterial and wound-healing characteristics. This systematic review was produced to show the design and applications of AMPs in wound healing. The terms "antimicrobial peptides AND wound healing" were used to search for articles published between September 2023 and January 2010. In the search, we found a total of 12958 articles, of which 12898 were excluded, and the remaining 60 articles were chosen for further study. This systematic review underscores the potential of AMPs as valuable tools in infection control and wound healing, showcasing their versatility and effectiveness in combating a wide range of pathogens. Overall, AMPs in wound healing display a diverse mechanism of action, influencing the inflammatory response, encouraging tissue regeneration, and aiding tissue remodeling, along with strong antibacterial activity. Furthermore, this systematic review addresses AMP toxicity studies, which include rigorous in vitro and in vivo examinations to determine potential cytotoxic effects, systemic toxicity, and any adverse responses connected with its usage in wound-healing applications.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, SAU
| | - Javed M Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, SAU
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra, SAU
| |
Collapse
|
12
|
Barua M, Bandyopadhyay S, Wasai A, Ghosh M, Roy I, Ghosh P, Koner S, Rizzoli C, Roy A, Saha S, Mandal S. A trinuclear Zn (II) schiff base dicyanamide complex attenuates bacterial biofilm formation by ROS generation and membrane damage and exhibits anticancer activity. Microb Pathog 2024; 188:106548. [PMID: 38262493 DOI: 10.1016/j.micpath.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
A trinuclear Zn (II) complex, [(ZnL{N(CN)2})2Zn], termed complex 1 has been synthesized by the reaction of an aqueous solution of sodium dicyanamide to the methanolic solution of Zn (CH3COO)2, 2H2O and corresponding Schiff base (H2L) which is derived from 1:2 condensation of 1, 4 butane diamine with 3-ethoxy salicylaldehyde. Complex 1 is characterized by elemental analysis, IR, UV and Single X-ray diffraction study. Drug resistance is a growing global public health concern that has prompted researchers to look into advanced alternative treatment modalities. In this context, complex 1 has shown promising antibacterial and antibiofilm efficacy against gram-positive Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus strains. Complex 1 attenuated Staphylococcal biofilm formation by reducing several virulence factors including the formation of extracellular polysaccharide matrix, slime, haemolysin, staphyloxanthin, auto-aggregation, cell surface hydrophobicity, and motility. Notably, complex 1 mechanistically potentiated Reactive Oxygen Species (ROS) generation within the bacterial cells, leading to the damage of bacterial cell membrane followed by DNA leakage and thereby impeding the growth of Staphylococcus aureus. Furthermore, complex 1 significantly exhibited anticancer activity by reducing the growth of prostate adenocarcinoma cells. It obstructed the migration of cancer cells by potentiating apoptosis and arresting the cell cycle at the G2/M phase. In summary, complex 1 could act as a potent candidate for the generation of novel antibacterial, antibiofilm as well as anticancer treatment regimens for the management of drug-resistant biofilm-mediated Staphylococcus aureus infection and lethal prostate malignancy.
Collapse
Affiliation(s)
- Mamata Barua
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Kalyani, 741235, West Bengal, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, J3 Block, Room 111, Sector 125, Noida, 201303, UP, India
| | - Mrinmoy Ghosh
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Indrani Roy
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Pameli Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Subratanath Koner
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Corrado Rizzoli
- Universita' degli Studi di Parma, Dipartimento S.C.V.S.A., Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, J3 Block, Room 111, Sector 125, Noida, 201303, UP, India.
| | - Sandip Saha
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India.
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
13
|
Mondal T, Chatterjee A, Hansda B, Mondal B, Sen P, Banerjee A. Cationic and amphiphilic peptide-based hydrogels with dual activities as anticancer and antibacterial agents. SOFT MATTER 2024; 20:1236-1244. [PMID: 38230549 DOI: 10.1039/d3sm01291c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The emergence of peptide-based functional biomaterials is on the rise. To fulfil this purpose, a series of amphiphilic peptides, such as H2N-X-Met-Phe-C12H25, where X = L-lysine (CP1), X = L-histidine (CP2), and X = L-leucine (CP3), have been designed, synthesised, purified and fully characterised. Herein, we reported peptide-based supramolecular hydrogels with antibacterial and anticancer activities. An attempt has been made to investigate the antibacterial properties of these peptide-based hydrogels against Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. Investigations show that the L-lysine containing gelator, CP1, is active against both Gram-positive and Gram-negative bacteria and the L-histidine containing gelator, CP2, selectively inhibits the growth of Gram-negative bacteria. Interestingly, the L-leucine containing gelator, CP3, does not show any antibacterial properties. Moreover, the L-lysine containing gelator exhibits the best potency. Generation of reactive oxygen species (ROS) is a probable way to damage the bacterial membrane. To explore the cytotoxic properties and to determine the efficacy of the synthesized compounds in inhibiting cell viability, a comprehensive investigation was performed using three distinct cell lines: MDA-MB-231 (human triple-negative breast cancer), MDA-MB-468 (human triple-negative breast cancer) and HEK 293 (human embryonic kidney). Remarkably, the results of our study revealed a substantial cytotoxic impact of these peptide gelators on the MDA-MB-231 and MDA-MB-468 cell lines in comparison to the HEK 293 cells. Caspase 3/7 activity is the possible mechanistic path to determine the apoptotic rates of the cell lines. This finding emphasizes the promising potential of these peptide-based gelators in targeting and suppressing the growth of human triple negative breast cancer cells, while showing non-cytotoxicity towards non-cancerous HEK 293 cells. In a nutshell, these peptide-based materials are coming to light as next generation biomaterials.
Collapse
Affiliation(s)
- Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|