1
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
2
|
Endogenous peroxynitrite activated fluorescent probe for revealing anti‐tuberculosis drug induced hepatotoxicity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Mishra R, Chaurasia H, Singh VK, Naaz F, Singh RK. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Shmoylova YY, Kovygin YA, Ledenyova IV, Prezent MA, Baranin SV, Shikhaliev KS. Synthesis of new tetrahydropyrido[1,2-a]benzimidazoles based on recyclization of N-arylitaconimides with 2-cyanomethylbenzimidazole. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Nizi MG, Desantis J, Nakatani Y, Massari S, Mazzarella MA, Shetye G, Sabatini S, Barreca ML, Manfroni G, Felicetti T, Rushton-Green R, Hards K, Latacz G, Satała G, Bojarski AJ, Cecchetti V, Kolář MH, Handzlik J, Cook GM, Franzblau SG, Tabarrini O. Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. Eur J Med Chem 2020; 201:112420. [DOI: 10.1016/j.ejmech.2020.112420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/21/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
|
6
|
Azzali E, Girardini M, Annunziato G, Pavone M, Vacondio F, Mori G, Pasca MR, Costantino G, Pieroni M. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Med Chem Lett 2020; 11:1435-1441. [PMID: 32676151 DOI: 10.1021/acsmedchemlett.0c00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
To obtain effective eradication of numerous infectious diseases such as tuberculosis, it is important to supply the medicinal chemistry arsenal with novel chemical agents. Isosterism and bioisosterism are widely known concepts in the field of early drug discovery, and in several cases, rational isosteric replacements have contributed to improved efficacy and physicochemical characteristics throughout the hit-to-lead optimization process. However, sometimes the synthesis of isosteres might not be as straightforward as that of the parent compounds, and therefore, novel synthetic strategies must be elaborated. In this regard, we herein report the evaluation of a series of N-substituted 4-phenyl-2-aminooxazoles that, despite being isosteres of a widely used nucleus such as the 2-aminothiazole, have been only seldom explored. After elaboration of a convenient synthetic strategy, a small set of 2-aminothiazoles and their 2-aminooxazole counterparts were compared with regard to antitubercular activity and physicochemical characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Federica Vacondio
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| | - Giorgia Mori
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Costantino
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Marco Pieroni
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| |
Collapse
|
7
|
Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther 2020; 18:741-757. [PMID: 32434397 DOI: 10.1080/14787210.2020.1760845] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In 2018, an estimated 377,000 people developed multidrug-resistant tuberculosis (MDR-TB), urging for new effective treatments. In the last years, it has been accepted that efflux pumps play an important role in the evolution of drug resistance. Strategies are required to mitigate the consequences of the activity of efflux pumps. AREAS COVERED Based upon the literature available in PubMed, up to February 2020, on the diversity of efflux pumps in Mycobacterium tuberculosis and their association with drug resistance, studies that identified efflux inhibitors and their effect on restoring the activity of antimicrobials subjected to efflux are reviewed. These support a new strategy for the development of anti-TB drugs, including efflux inhibitors, using in silico drug repurposing. EXPERT OPINION The current literature highlights the contribution of efflux pumps in drug resistance in M. tuberculosis and that efflux inhibitors may help to ensure the effectiveness of anti-TB drugs. However, despite the usefulness of efflux inhibitors in in vitro studies, in most cases their application in vivo is restricted due to toxicity. In a time when new drugs are needed to fight MDR-TB and extensively drug-resistant TB, cost-effective strategies to identify safer efflux inhibitors should be implemented in drug discovery programs.
Collapse
Affiliation(s)
- Liliana Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
8
|
Djikic T, Vucicevic J, Laurila J, Radi M, Veljkovic N, Xhaard H, Nikolic K. Deciphering Imidazoline Off‐targets by Fishing in the Class A of GPCR field. Mol Inform 2020; 39:e1900165. [DOI: 10.1002/minf.201900165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Teodora Djikic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| | - Jelica Vucicevic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| | - Jonne Laurila
- Research Center for Integrative Physiology and Pharmacology, Institute of BiomedicineUniversity of Turku FI-20014 Turun yliopisto, Turku Finland
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Nevena Veljkovic
- Laboratory for bioinformatics and computational chemistry, Institute of Nuclear Sciences VincaUniversity of Belgrade Mihaila Petrovica Alasa 14 11001 Belgrade Serbia
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of Helsinki P.O. Box 56 FI-00014 Helsinki Finland
| | - Katarina Nikolic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| |
Collapse
|
9
|
Thioridazine Induces Cardiotoxicity via Reactive Oxygen Species-Mediated hERG Channel Deficiency and L-Type Calcium Channel Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3690123. [PMID: 32064022 PMCID: PMC6998749 DOI: 10.1155/2020/3690123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.
Collapse
|
10
|
Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci 2019; 20:E5844. [PMID: 31766441 PMCID: PMC6928725 DOI: 10.3390/ijms20235844] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Antibiotics have always been considered as one of the most relevant discoveries of the twentieth century. Unfortunately, the dawn of the antibiotic era has sadly corresponded to the rise of the phenomenon of antimicrobial resistance (AMR), which is a natural process whereby microbes evolve in such a way to withstand the action of drugs. In this context, the identification of new potential antimicrobial targets and/or the identification of new chemical entities as antimicrobial drugs are in great demand. To date, among the many possible approaches used to deal with antibiotic resistance is the use of antibiotic adjuvants that hit bacterial non-essential targets. In this review, the author focuses on the discovery of antibiotic adjuvants and on new tools to study and reduce the prevalence of resistant bacterial infections.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- Probes for Targets Group (P4T group), Department of food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
11
|
Narang R, Kumar R, Kalra S, Nayak SK, Khatik GL, Kumar GN, Sudhakar K, Singh SK. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent. Eur J Med Chem 2019; 182:111644. [DOI: 10.1016/j.ejmech.2019.111644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
|
12
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Evaluation of in silico designed inhibitors targeting MelF (Rv1936) against Mycobacterium marinum within macrophages. Sci Rep 2019; 9:10084. [PMID: 31300732 PMCID: PMC6626058 DOI: 10.1038/s41598-019-46295-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
We recently identified inhibitors targeting Mycobacterium marinum MelF (Rv1936) by in silico analysis, which exhibited bacteriostatic/bactericidal activity against M. marinum and M. tuberculosis in vitro. Herein, we evaluated the effect of best four inhibitors (# 5175552, # 6513745, # 5255829, # 9125618) obtained from the ChemBridge compound libraries, on intracellular replication and persistence of bacteria within IFN-γ activated murine RAW264.7 and human THP-1 macrophages infected with M. marinum. Inhibitors # 5175552 and # 6513745 significantly reduced (p < 0.05) the intracellular replication of bacilli during day 7 post-infection (p.i.) within RAW264.7 and THP-1 macrophages infected at multiplicity of infection (MOI) of ~1.0. These observations were substantiated by electron microscopy, which revealed the protective effect of # 5175552 in clearing the bacilli inside murine macrophages. Strikingly, # 6513745 displayed synergism with isoniazid against M. marinum in murine macrophages, whereas # 5175552 significantly suppressed (p < 0.05) the persistent bacilli during day 10–14 p.i. in infected RAW264.7 and THP-1 macrophages (MOI of ~ 0.1). Moreover, # 5175552 and # 6513745 were non-cytotoxic to host macrophages at both 1X and 5X MIC. Further validation of these inhibitors against M. tuberculosis-infected macrophages and animal models has potential for development as novel anti-tubercular agents.
Collapse
|
14
|
Felicetti T, Machado D, Cannalire R, Astolfi A, Massari S, Tabarrini O, Manfroni G, Barreca ML, Cecchetti V, Viveiros M, Sabatini S. Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infect Dis 2019; 5:982-1000. [PMID: 30907573 DOI: 10.1021/acsinfecdis.9b00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous microbes belonging to the Mycobacterium genus. Among all NTM pathogens, M. avium is one of the most frequent agents causing pulmonary disease, especially in immunocompromised individuals and cystic fibrosis patients. Recently, we reported the first ad hoc designed M. avium efflux pump inhibitor (EPI; 1b) able to strongly boost clarithromycin (CLA) MIC against different M. avium strains. Since the 3-phenylquinolone derivative 1b suffered from toxicity issues toward human macrophages, herein we report a two-pronged medicinal chemistry workflow for identifying new potent and safe NTM EPIs. Initially, we followed a computational approach exploiting our pharmacophore models to screen FDA approved drugs and in-house compounds to identify "ready-to-use" NTM EPIs and/or new scaffolds to be optimized in terms of EPI activity. Although nicardipine 2 was identified as a new NTM EPI, all identified molecules still suffered from toxicity issues. Therefore, based on the promising NTM EPI activity of 1b, we undertook the design, synthesis, and biological evaluation of new 3-phenylquinolones differently functionalized at the C6/C7 as well as N1 positions. Among the 27 synthesized 3-phenylquinolone analogues, compounds 11b, 12b, and 16a exerted excellent NTM EPI activity at concentrations below their CC50 on human cells, with derivative 16a being the most promising compound. Interestingly, 16a also showed good activity in M. avium-infected macrophages both alone as well as in combination with CLA. The antimycobacterial activity observed for 16a only when tested in the ex vivo model suggests a high therapeutic potential of EPIs against M. avium, which seems to need functional efflux pumps to establish intracellular infections.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
15
|
Non-antibiotic adjunctive therapy: A promising approach to fight tuberculosis. Pharmacol Res 2019; 146:104289. [PMID: 31152788 DOI: 10.1016/j.phrs.2019.104289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is currently a clinical and public health problem. There is a concern about the emergence and development of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) species. Additionally, the lack of effective vaccines is another limitation to control the related infections. To overcome these problems various approaches have been pursued such as finding novel drug candidates with a new mechanism of action or repurposing conventional antibiotics. However, these strategies are still far from clinical application. Hence, the use of adjunctive therapy has been suggested for TB. In this paper, we review non-antibiotic adjunctive treatment options for TB. Natural products, vitamins, micronutrients, and trace elementals, as well as non-antibiotic drugs, are examples of agents which have been used as adjunctive therapies. The use of these adjunctive therapies has been shown to improve disease outcomes and reduce the adverse effects of antibiotic drugs. Employing these agents, either alone or in combination with antibiotics, might be considered as a promising approach to control TB infections and achieve better clinical outcomes. However, supportive evidence from randomized controlled trials is still scant and merits further investigations.
Collapse
|
16
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
17
|
Srivastava R, Gupta SK, Naaz F, Singh A, Singh VK, Verma R, Singh N, Singh RK. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Comput Biol Chem 2018; 76:1-16. [DOI: 10.1016/j.compbiolchem.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
|
18
|
Machado D, Azzali E, Couto I, Costantino G, Pieroni M, Viveiros M. Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting Mycobacterium tuberculosis energetics. Future Microbiol 2018; 13:1383-1402. [PMID: 30259757 DOI: 10.2217/fmb-2018-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To evaluate the activity of the 2-aminothiazole UPAR-174 following an unexplored approach: targeting Mycobacterium tuberculosis with lipophilic compounds that present antituberculosis and efflux inhibitory activity. METHODS Antituberculosis activity was assessed against replicating, nonreplicating and intracellular bacilli. Its capacity to inhibit active efflux was determined. ATP quantification and membrane potential analysis were performed. Intracellular activity was studied on human-monocyte-derived macrophages. RESULTS UPAR-174 is an efflux inhibitor active against replicating, nonreplicating and intracellular M. tuberculosis. It dissipates the membrane potential and causes ATP depletion. CONCLUSION Targeting M. tuberculosis with lipophilic efflux inhibitors, exploring their dual activity - dissipation of the proton motive force and efflux inhibition - represents an attractive strategy to fight against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Diana Machado
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Elisa Azzali
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy.,Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Isabel Couto
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Gabriele Costantino
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Marco Pieroni
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Miguel Viveiros
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| |
Collapse
|
19
|
Machado D, Girardini M, Viveiros M, Pieroni M. Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Front Microbiol 2018; 9:1367. [PMID: 30018597 PMCID: PMC6037898 DOI: 10.3389/fmicb.2018.01367] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023] Open
Abstract
The emergence of multi- and extensively drug resistant tuberculosis worldwide poses a great threat to human health and highlight the need to discover and develop new, effective and inexpensive antituberculosis agents. High-throughput screening assays against well-validated drug targets and structure based drug design have been employed to discover new lead compounds. However, the great majority fail to demonstrate any antimycobacterial activity when tested against Mycobacterium tuberculosis in whole-cell screening assays. This is mainly due to some of the intrinsic properties of the bacilli, such as the extremely low permeability of its cell wall, slow growth, drug resistance, drug tolerance, and persistence. In this sense, understanding the pathways involved in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new approaches for drug development. Moreover, the need for compounds presenting a novel mode of action is of utmost importance due to the emergence of resistance not only to the currently used antituberculosis agents, but also to those in the pipeline. Cheminformatics studies have shown that drugs endowed with antituberculosis activity have the peculiarity of being more lipophilic than many other antibacterials, likely because this leads to improved cell penetration through the extremely waxy mycobacterial cell wall. Moreover, the interaction of the lipophilic moiety with the membrane alters its stability and functional integrity due to the disruption of the proton motive force, resulting in cell death. When a ligand-based medicinal chemistry campaign is ongoing, it is always difficult to predict whether a chemical modification or a functional group would be suitable for improving the activity. Nevertheless, in the “instruction manual” of medicinal chemists, certain functional groups or certain physicochemical characteristics (i.e., high lipophilicity) are considered red flags to look out for in order to safeguard drug-likeness and avoid attritions in the drug discovery process. In this review, we describe how antituberculosis compounds challenge established rules such as the Lipinski's “rule of five” and how medicinal chemistry for antituberculosis compounds must be thought beyond such dogmatic schemes.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Miriam Girardini
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Naaz F, Srivastava R, Singh A, Singh N, Verma R, Singh VK, Singh RK. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg Med Chem 2018; 26:3414-3428. [DOI: 10.1016/j.bmc.2018.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022]
|
21
|
Machado D, Perdigão J, Portugal I, Pieroni M, Silva PA, Couto I, Viveiros M. Efflux Activity Differentially Modulates the Levels of Isoniazid and Rifampicin Resistance among Multidrug Resistant and Monoresistant Mycobacterium tuberculosis Strains. Antibiotics (Basel) 2018; 7:antibiotics7010018. [PMID: 29510519 PMCID: PMC5872129 DOI: 10.3390/antibiotics7010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/01/2023] Open
Abstract
With the growing body of knowledge on the contribution of efflux activity to Mycobacterium tuberculosis drug resistance, increased attention has been given to the use of efflux inhibitors as adjuvants of tuberculosis therapy. Here, we investigated how efflux activity modulates the levels of efflux between monoresistant and multi- and extensively drug resistant (M/XDR) M. tuberculosis clinical isolates. The strains were characterized by antibiotic susceptibility testing in the presence/absence of efflux inhibitors, molecular typing, and genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. The results demonstrated that all the M. tuberculosis clinical strains, susceptible or resistant, presented a faster, rapid, and non-specific efflux-mediated short-term response to drugs. The synergism assays demonstrated that the efflux inhibitors were more effective in reducing the resistance levels in the M/XDR strains than in the monoresistant strains. This indicated that M/XDR strains presented a more prolonged response to drugs mediated by efflux compared to the monoresistant strains, but both maintain it as a long-term stress response. This work shows that efflux activity modulates the levels of drug resistance between monoresistant and M/XDR M. tuberculosis clinical strains, allowing the bacteria to survive in the presence of noxious compounds.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| | - João Perdigão
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| | - Isabel Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| | - Marco Pieroni
- P4T Group, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Porto Alegre 96200-190, Brazil.
| | - Pedro A Silva
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| |
Collapse
|
22
|
1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. Eur J Med Chem 2017; 144:262-276. [PMID: 29274493 DOI: 10.1016/j.ejmech.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022]
Abstract
The emergence of multi- and extensively-drug resistant tubercular (MDR- and XDR-TB) strains of mycobacteria has limited the use of existing therapies, therefore new drugs are needed. Dihydrofolate reductase (DHFR) has recently attracted much attention as a target for the development of anti-TB agents. This study aimed to develop selective M. tuberculosis DHFR inhibitors using rationale scaffolding design and synthesis, phenotype-oriented screening, enzymatic inhibitory study, whole cell on-target validation, molecular modeling, and in vitro DMPK determination to derive new anti-TB agents. 2,4-diamino-1-phenyl-1,3,5-triazaspiro[5.5]undeca-2,4-dienes 20b and 20c were identified as selective M. tuberculosis DHFR inhibitors, showing promising antimycobacterial activities (MIC50: 0.01 μM and MIC90: 0.025 μM on M. tuberculosis H37Rv). This study provided compelling evidence that compound 20b and 20c exerted whole cell antimycobacterial activity through DHFR inhibition. In addition, these two compounds exhibited low cytotoxicity and low hemolytic activity. The in vitro DMPK and physiochemical properties suggested their potential in vivo efficacy.
Collapse
|
23
|
Costa SS, Lopes E, Azzali E, Machado D, Coelho T, da Silva PEA, Viveiros M, Pieroni M, Couto I. An Experimental Model for the Rapid Screening of Compounds with Potential Use Against Mycobacteria. Assay Drug Dev Technol 2017; 14:524-534. [PMID: 27845849 DOI: 10.1089/adt.2016.752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Infections caused by Mycobacterium tuberculosis and other mycobacteria are major challenges for global public health. Particularly worrisome are infections caused by multidrug-resistant bacteria, which are increasingly difficult to treat because of the loss of efficacy of the current antibacterial agents, a problem that continues to escalate worldwide. There has been a limited interest and investment on the development of new antibacterial agents in the past decades. This has led to the current situation, in which there is an urgent demand for innovative therapeutic alternatives to fight infections caused by multidrug-resistant pathogens, such as multidrug-resistant tuberculosis. The identification of compounds that can act as adjuvants in antimycobacterial therapeutic regimens is an appealing strategy to restore the efficacy lost by some of the antibiotics currently used and shorten the duration of the therapeutic regimen. In this work, by setting Mycobacterium smegmatis as a model organism, we have developed a methodological strategy to identify, in a fast and simple approach, compounds with antimycobacterial activity or with potential adjuvant properties, by either inhibition of efflux or other unrelated mechanisms. Such an approach may increase the rate of identification of promising molecules, to be further explored in pathogenic models for their potential use either as antimicrobials or as adjuvants, in combination with available therapeutic regimens for the treatment of mycobacterial infections. This method allowed us to identify a new molecule that shows promising activity as an efflux inhibitor in M. smegmatis.
Collapse
Affiliation(s)
- Sofia Santos Costa
- 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Lisbon, Portugal
| | - Elizeth Lopes
- 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Lisbon, Portugal
| | - Elisa Azzali
- 2 P4T group, Department of Pharmacy, University of Parma , Parma, Italy
| | - Diana Machado
- 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Lisbon, Portugal
| | - Tatiane Coelho
- 3 Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande , Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- 3 Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande , Rio Grande, Brazil
| | - Miguel Viveiros
- 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Lisbon, Portugal
| | - Marco Pieroni
- 2 P4T group, Department of Pharmacy, University of Parma , Parma, Italy
| | - Isabel Couto
- 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Lisbon, Portugal
| |
Collapse
|
24
|
Azzali E, Machado D, Kaushik A, Vacondio F, Flisi S, Cabassi CS, Lamichhane G, Viveiros M, Costantino G, Pieroni M. Substituted N-Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides Are Valuable Antitubercular Candidates that Evade Innate Efflux Machinery. J Med Chem 2017; 60:7108-7122. [PMID: 28749666 DOI: 10.1021/acs.jmedchem.7b00793] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis remains one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extremely drug-resistant strains is a significant reason for concern. This makes the discovery of novel antitubercular agents a cogent priority. We have previously addressed this need by reporting a series of substituted 2-aminothiazoles capable to inhibit the growth of actively replicating, nonreplicating persistent, and resistant Mycobacterium tuberculosis strains. Clues from the structure-activity relationships lining up the antitubercular activity were exploited for the rational design of improved analogues. Two compounds, namely N-phenyl-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 7a and N-(pyridin-2-yl)-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 8a, were found to show high inhibitory activity toward susceptible M. tuberculosis strains, with an MIC90 of 0.125-0.25 μg/mL (0.33-0.66 μM) and 0.06-0.125 μg/mL (0.16-0.32 μM), respectively. Moreover, they maintained good activity also toward resistant strains, and they were selective over other bacterial species and eukaryotic cells, metabolically stable, and apparently not susceptible to the action of efflux pumps.
Collapse
Affiliation(s)
- Elisa Azzali
- Centro Interdipartimentale Misure (CIM) 'G. Casnati', University of Parma , Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Amit Kaushik
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University , 1503 East Jefferson Street, Baltimore, Maryland 21231-1002, United States.,Taskforce to Study Resistance Emergence & Antimicrobial development Technology, Department of Medicine, Johns Hopkins University , Baltimore, Maryland 21287, United States
| | | | - Sara Flisi
- Department of Veterinary Science, University of Parma , via del Taglio 10, 43126 Parma, Italy
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma , via del Taglio 10, 43126 Parma, Italy
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University , 1503 East Jefferson Street, Baltimore, Maryland 21231-1002, United States.,Taskforce to Study Resistance Emergence & Antimicrobial development Technology, Department of Medicine, Johns Hopkins University , Baltimore, Maryland 21287, United States
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | | | | |
Collapse
|
25
|
Machado D, Coelho TS, Perdigão J, Pereira C, Couto I, Portugal I, Maschmann RDA, Ramos DF, von Groll A, Rossetti MLR, Silva PA, Viveiros M. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis. Front Microbiol 2017; 8:711. [PMID: 28496433 PMCID: PMC5406451 DOI: 10.3389/fmicb.2017.00711] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis. A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55, and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality that is often disregarded by the tuberculosis specialists in favor of the almost undisputed importance of antibiotic target-gene mutations for the resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | - Tatiane S. Coelho
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
| | - João Perdigão
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - Catarina Pereira
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - Raquel De Abreu Maschmann
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e TecnológicoPorto Alegre, Brazil
| | - Daniela F. Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
| | - Maria L. R. Rossetti
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e TecnológicoPorto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do BrasilCanoas, Brazil
| | - Pedro A. Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Fundação Universidade Federal do Rio GrandePorto Alegre, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| |
Collapse
|
26
|
Rodrigues L, Parish T, Balganesh M, Ainsa JA. Antituberculosis drugs: reducing efflux = increasing activity. Drug Discov Today 2017; 22:592-599. [DOI: 10.1016/j.drudis.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
|
27
|
Scalacci N, Brown AK, Pavan FR, Ribeiro CM, Manetti F, Bhakta S, Maitra A, Smith DL, Petricci E, Castagnolo D. Synthesis and SAR evaluation of novel thioridazine derivatives active against drug-resistant tuberculosis. Eur J Med Chem 2017; 127:147-158. [DOI: 10.1016/j.ejmech.2016.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
|
28
|
Amaral L, Viveiros M. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics (Basel) 2017; 6:antibiotics6010003. [PMID: 28098814 PMCID: PMC5372983 DOI: 10.3390/antibiotics6010003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as in vivo as a therapy for mice infected with multi-drug resistant strains of Mtb, or for human subjects infected with extensively drug resistant (XDR) Mtb. The mechanisms of action by which TZ brings about successful therapeutic outcomes are presented in detail.
Collapse
Affiliation(s)
- Leonard Amaral
- Insititute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Hungary.
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
| |
Collapse
|
29
|
Kumar M, Singh K, Naran K, Hamzabegovic F, Hoft DF, Warner DF, Ruminski P, Abate G, Chibale K. Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:714-725. [PMID: 27737555 DOI: 10.1021/acsinfecdis.6b00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efflux pumps are considered a major potential contributor to the development of various forms of resistance in Mycobacterium tuberculosis leading to the emergence of multidrug-resistant tuberculosis (TB). Verapamil (VER) and tricyclic chemosensitizers such as the phenothiazines are known to possess efflux pump inhibition properties and have demonstrated significant efficacy in various TB disease models. Novel hybrid molecules based on fusion of the VER substructure with various tricyclic, as well as nontricyclic, chemosensitizer cores or their structural motifs are described. These hybrid compounds were evaluated in vitro and ex vivo individually for their intrinsic activity and in combination for their potentiating potential with the frontline anti-TB drugs, rifampin and isoniazid. In addition, efflux pump inhibition was assessed in an ethidium bromide assay. This study led to the identification of novel compounds, termed hybrid efflux pump inhibitors, with intrinsic antimycobacterial activities (MIC90 ≤ 3.17 μg/mL) and intracellular activity in macrophages at a low concentration (≤6.25 μg/mL).
Collapse
Affiliation(s)
- Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular
Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Fahreta Hamzabegovic
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Daniel F. Hoft
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
- Department of Molecular Biology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Digby F. Warner
- MRC/NHLS/UCT Molecular
Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular
Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Peter Ruminski
- Centre for World Health and Medicine, Saint Louis University, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Getahun Abate
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular
Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council
Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
30
|
Zhao BQ, Peng S, He WJ, Liu YH, Wang JF, Zhou XJ. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg Med Chem Lett 2016; 26:4996-4999. [DOI: 10.1016/j.bmcl.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/02/2016] [Accepted: 09/02/2016] [Indexed: 02/02/2023]
|
31
|
Annunziato G, Angeli A, D'Alba F, Bruno A, Pieroni M, Vullo D, De Luca V, Capasso C, Supuran CT, Costantino G. Discovery of New Potential Anti-Infective Compounds Based on Carbonic Anhydrase Inhibitors by Rational Target-Focused Repurposing Approaches. ChemMedChem 2016; 11:1904-14. [PMID: 27304878 DOI: 10.1002/cmdc.201600180] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/16/2016] [Indexed: 12/31/2022]
Abstract
In academia, compound recycling represents an alternative drug discovery strategy to identify new pharmaceutical targets from a library of chemical compounds available in house. Herein we report the application of a rational target-based drug-repurposing approach to find diverse applications for our in-house collection of compounds. The carbonic anhydrase (CA, EC 4.2.1.1) metalloenzyme superfamily was identified as a potential target of our compounds. The combination of a thoroughly validated docking screening protocol, together with in vitro assays against various CA families and isoforms, allowed us to identify two unprecedented chemotypes as CA inhibitors. The identified compounds have the capacity to preferentially bind pathogenic (bacterial/protozoan) CAs over human isoforms and represent excellent hits for further optimization in hit-to-lead campaigns.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- Università degli Studi di Parma, Dipartimento di Farmacia, P4T group, Parco Area delle Scienze, Via G.P. Usberti 27A, 43121, Parma, Italy
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesca D'Alba
- Università degli Studi di Parma, Dipartimento di Farmacia, P4T group, Parco Area delle Scienze, Via G.P. Usberti 27A, 43121, Parma, Italy
| | - Agostino Bruno
- Università degli Studi di Parma, Dipartimento di Farmacia, P4T group, Parco Area delle Scienze, Via G.P. Usberti 27A, 43121, Parma, Italy.
| | - Marco Pieroni
- Università degli Studi di Parma, Dipartimento di Farmacia, P4T group, Parco Area delle Scienze, Via G.P. Usberti 27A, 43121, Parma, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy. .,Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Gabriele Costantino
- Università degli Studi di Parma, Dipartimento di Farmacia, P4T group, Parco Area delle Scienze, Via G.P. Usberti 27A, 43121, Parma, Italy
| |
Collapse
|
32
|
Vucicevic J, Srdic-Rajic T, Pieroni M, Laurila JMM, Perovic V, Tassini S, Azzali E, Costantino G, Glisic S, Agbaba D, Scheinin M, Nikolic K, Radi M, Veljkovic N. A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. Bioorg Med Chem 2016; 24:3174-83. [PMID: 27265687 DOI: 10.1016/j.bmc.2016.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
The clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I1-type imidazoline receptors (I1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from α2-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine-derived compounds with anticancer potential and devoid of α2-adrenoceptor effects by means of ligand- and structure-based drug design approaches. Starting from a large virtual library, eleven compounds were selected, synthesized and submitted to biological evaluation. The most active compound 5 exhibited a cytotoxic profile similar to that of rilmenidine, but without appreciable affinity to α2-adrenoceptors. In addition, compound 5 significantly enhanced the apoptotic response to doxorubicin, and may thus represent an important tool for the development of better adjuvant chemotherapeutic strategies for doxorubicin-insensitive cancers.
Collapse
Affiliation(s)
- Jelica Vucicevic
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Marco Pieroni
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Jonne M M Laurila
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, POB 522, Mihaila Petrovica Alasa 14, 11001 Belgrade, Serbia
| | - Sabrina Tassini
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Elisa Azzali
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Gabriele Costantino
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, POB 522, Mihaila Petrovica Alasa 14, 11001 Belgrade, Serbia
| | - Danica Agbaba
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland; Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Katarina Nikolic
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Marco Radi
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy.
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, POB 522, Mihaila Petrovica Alasa 14, 11001 Belgrade, Serbia.
| |
Collapse
|
33
|
Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis. PLoS One 2016; 11:e0149326. [PMID: 26919135 PMCID: PMC4769142 DOI: 10.1371/journal.pone.0149326] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their resistance pattern. This work highlights the potential value ion channel blockers as adjuvants of tuberculosis chemotherapy, in particular for the development of new therapeutic strategies, with strong potential for treatment shortening against drug susceptible and resistant forms of tuberculosis. Medicinal chemistry studies are now needed to improve the properties of these compounds, increasing their M. tuberculosis efflux-inhibition and killing-enhancement activity and reduce their toxicity for humans, therefore optimizing their potential for clinical usage.
Collapse
|
34
|
Jadhav SB, Fatema S, Farooqui M. WITHDRAWN: Tetra-block conjugates: Synthesis and pharmacological evaluation of thiazolo[3,2-a]pyrimidinones as dual inhibitor of tuberculosis and inflammation. Bioorg Med Chem Lett 2015. [DOI: 10.1016/j.bmcl.2015.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|