1
|
Giladi M, Montgomery AP, Kassiou M, Danon JJ. Structure-based drug design for TSPO: Challenges and opportunities. Biochimie 2024; 224:41-50. [PMID: 38782353 DOI: 10.1016/j.biochi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.
Collapse
Affiliation(s)
- Mia Giladi
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Xiong B, You W, Luo Y, Jin G, Wu M, Xu Y, Yang J, Huang H, Yu C. Investigation of the Possible Allostery of Koumine Extracted From Gelsemium elegans Benth. And Analgesic Mechanism Associated With Neurosteroids. Front Pharmacol 2021; 12:739618. [PMID: 34671258 PMCID: PMC8520994 DOI: 10.3389/fphar.2021.739618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is an evolutionarily conserved 5-transmembrane domain protein, and has been considered as an important therapeutic target for the treatment of pain. We have recently reported the in vitro and in vivo pharmacological characterization of koumine as a TSPO positive allosteric modulator (PAM), more precisely ago-PAM. However, the probe dependence in the allostery of koumine is an important question to resolve, and the possible analgesic mechanism of koumine remains to be clarified. Here, we report the in vivo evaluation of the allostery of koumine when orthosteric ligand PK11195 was used and preliminarily explore the possible analgesic mechanism of koumine associated with neurosteroids. We find that koumine is an ago-PAM of the PK11195-mediated analgesic effect at TSPO, and the analgesic mechanism of this TSPO ago-PAM may be associated with neurosteroids as the analgesic effects of koumine in the formalin-induced inflammatory pain model and chronic constriction injury-induced neuropathic pain model can be antagonized by neurosteroid synthesis inhibitor aminoglutethimide. Although our results cannot fully clarify the allosteric modulatory effect of koumine, it further prove the allostery in TSPO and provide a solid foundation for koumine to be used as a new clinical candidate drug to treat pain.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Minxia Wu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Xiong B, Jin G, Xu Y, You W, Luo Y, Fang M, Chen B, Huang H, Yang J, Lin X, Yu C. Identification of Koumine as a Translocator Protein 18 kDa Positive Allosteric Modulator for the Treatment of Inflammatory and Neuropathic Pain. Front Pharmacol 2021; 12:692917. [PMID: 34248642 PMCID: PMC8264504 DOI: 10.3389/fphar.2021.692917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Menghan Fang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Danon JJ, Tregeagle DFL, Kassiou M. Adventures in Translocation: Studies of the Translocator Protein (TSPO) 18 kDa. Aust J Chem 2021. [DOI: 10.1071/ch21176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionarily conserved transmembrane protein found embedded in the outer mitochondrial membrane. A secondary target for the benzodiazepine diazepam, TSPO has been a protein of interest for researchers for decades, particularly owing to its well-established links to inflammatory conditions in the central and peripheral nervous systems. It has become a key biomarker for assessing microglial activation using positron emission tomography (PET) imaging in patients with diseases ranging from atherosclerosis to Alzheimer’s disease. This Account describes research published by our group over the past 15 years surrounding the development of TSPO ligands and their use in probing the function of this high-value target.
Collapse
|
6
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
7
|
Vo SV, Banister SD, Freelander I, Werry EL, Reekie TA, Ittner LM, Kassiou M. Reversing binding sensitivity to A147T translocator protein. RSC Med Chem 2020; 11:511-517. [PMID: 33479652 PMCID: PMC7489257 DOI: 10.1039/c9md00580c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/22/2020] [Indexed: 11/21/2022] Open
Abstract
The translocator protein (TSPO) is a target for the development of neuroinflammation imaging agents. Clinical translation of TSPO PET ligands, such as [11C]DPA-713, has been hampered by the presence of a common polymorphism (A147T TSPO), at which all second-generation TSPO ligands lose affinity. Little is known about what drives binding at A147T compared to WT TSPO. This study aimed to identify moieties in DPA-713, and related derivatives, that influence binding at A147T compared to WT TSPO. We found changes to the nitrogen position and number in the heterocyclic core influences affinity to WT and A147T to a similar degree. Hydrogen bonding groups in molecules with an indole core improve binding at A147T compared to WT, a strategy that generated compounds that possess up to ten-times greater affinity for A147T. These results should inform the future design of compounds that bind both A147T and WT TSPO for use in neuroinflammation imaging.
Collapse
Affiliation(s)
- Sophie V Vo
- Faculty of Medicine and Health , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics , Brain and Mind Centre , The University of Sydney , Camperdown , NSW 2050 , Australia
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia .
| | - Isaac Freelander
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia .
| | - Eryn L Werry
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia .
| | - Tristan A Reekie
- Research School of Chemistry , The Australian National University , Canberra , Australian Capital Territory 2600 , Australia
| | - Lars M Ittner
- Department of Biomedical Sciences , Faculty of Medicine and Health Sciences , Macquarie University , 2 Technology Place , North Ryde , New South Wales 2109 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia .
| |
Collapse
|
8
|
Cheng HWA, Sokias R, Werry EL, Ittner LM, Reekie TA, Du J, Gao Q, Hibbs DE, Kassiou M. First Nondiscriminating Translocator Protein Ligands Produced from a Carbazole Scaffold. J Med Chem 2019; 62:8235-8248. [DOI: 10.1021/acs.jmedchem.9b00980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Lars M. Ittner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Chen Y, Zhang R, Peng Q, Xu L, Pan X. Rhodium(III)-Catalyzed Directed C−H Amidation of N
-Nitrosoanilines and Subsequent Formation of 1,2-Disubstituted Benzimidazoles. Chem Asian J 2017; 12:2804-2808. [DOI: 10.1002/asia.201701287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyu Chen
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Rong Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Qiujun Peng
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Lanting Xu
- Shanghai Research Institute of Fragrance and Flavor Industry; 480 Nanning Road Shanghai 200232 P.R. China
| | - XianHua Pan
- Shanghai Research Institute of Fragrance and Flavor Industry; 480 Nanning Road Shanghai 200232 P.R. China
| |
Collapse
|
10
|
Jaipuria G, Leonov A, Giller K, Vasa SK, Jaremko Ł, Jaremko M, Linser R, Becker S, Zweckstetter M. Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat Commun 2017; 8:14893. [PMID: 28358007 PMCID: PMC5379104 DOI: 10.1038/ncomms14893] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/08/2017] [Indexed: 12/02/2022] Open
Abstract
Cholesterol is an important regulator of membrane protein function. However, the exact mechanisms involved in this process are still not fully understood. Here we study how the tertiary and quaternary structure of the mitochondrial translocator protein TSPO, which binds cholesterol with nanomolar affinity, is affected by this sterol. Residue-specific analysis of TSPO by solid-state NMR spectroscopy reveals a dynamic monomer–dimer equilibrium of TSPO in the membrane. Binding of cholesterol to TSPO's cholesterol-recognition motif leads to structural changes across the protein that shifts the dynamic equilibrium towards the translocator monomer. Consistent with an allosteric mechanism, a mutation within the oligomerization interface perturbs transmembrane regions located up to 35 Å away from the interface, reaching TSPO's cholesterol-binding motif. The lower structural stability of the intervening transmembrane regions provides a mechanistic basis for signal transmission. Our study thus reveals an allosteric signal pathway that connects membrane protein tertiary and quaternary structure with cholesterol binding. The outer mitochondrial membrane translocator protein (TSPO) mediates several mitochondrial functions and binds cholesterol with a high affinity. Here the authors use solid-state NMR to show that cholesterol binding to TSPO results in allosteric changes that modulate TSPO oligomerization.
Collapse
Affiliation(s)
- Garima Jaipuria
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany
| | - Andrei Leonov
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Suresh Kumar Vasa
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Łukasz Jaremko
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany
| | - Mariusz Jaremko
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Rasmus Linser
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany.,Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Sokias R, Werry EL, Chua SW, Reekie TA, Munoz L, Wong ECN, Ittner LM, Kassiou M. Determination and reduction of translocator protein (TSPO) ligand rs6971 discrimination. MEDCHEMCOMM 2016; 8:202-210. [PMID: 30108706 PMCID: PMC6071920 DOI: 10.1039/c6md00523c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation.
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation. Clinical translation of TSPO imaging agents has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Disclosed brain-permeant second-generation TSPO ligands bind TSPO A147T with reduced affinity compared to the wild type protein (TSPO WT). Efforts to develop a TSPO ligand that binds TSPO WT and TSPO A147T with similarly high affinity have been hampered by a lack of knowledge about how ligand structure differentially influences interaction with the two forms of TSPO. To gain insight, we have established human embryonic kidney cell lines stably over-expressing human TSPO WT and TSPO A147T, and tested how modifications of a novel N-alkylated carbazole scaffold influence affinity to both TSPO isoforms. Most of the new analogues developed in this study showed high affinity to TSPO WT and a 5–6-fold lower affinity to TSPO A147T. Addition of electron-withdrawing substituents yielded analogues with highest affinity for TSPO A147T without decreasing affinity for TSPO WT. This knowledge can be used to inform further development of non-discriminating TSPO ligands for use as diagnostic markers for glioblastoma and neuroinflammation irrespective of rs6971.
Collapse
Affiliation(s)
- Renee Sokias
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Eryn L Werry
- Faculty of Health Sciences , The University of Sydney , NSW 2006 , Australia.,School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Sook W Chua
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Tristan A Reekie
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Lenka Munoz
- School of Medical Sciences (Pathology) and Charles Perkins Centre , The University of Sydney , NSW 2006 , Australia
| | - Erick C N Wong
- School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Lars M Ittner
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| |
Collapse
|
12
|
Derivatives of the pyrazolo[1,5-a]pyrimidine acetamide DPA-713 as translocator protein (TSPO) ligands and pro-apoptotic agents in human glioblastoma. Eur J Pharm Sci 2016; 96:186-192. [PMID: 27658888 DOI: 10.1016/j.ejps.2016.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022]
Abstract
The 18kDa translocator protein (TSPO) is a target for novel glioblastoma therapies due to its upregulation in this cancer and relatively low levels of expression in the healthy cortex. The pyrazolo[1,5-a]pyrimidine acetamides, exemplified by DPA-713 and DPA-714, are a class of high affinity TSPO ligands with selectivity over the central benzodiazepine receptor. In this study we have explored the potential anti-glioblastoma activity of a library of DPA-713 and DPA-714 analogues, and investigated the effect of amending the alkyl ether chain on TSPO affinity and functional potential. All ligands demonstrated nanomolar affinity for TSPO, but showed diverse functional activity, for example DPA-713 and DPA-714 did not affect the proliferation or viability of human T98G glioblastoma cells, while the hexyl ether and benzyl ether derivatives decreased proliferation of T98G cells without affecting proliferation in human fetal glial SVGp12 cells. These ligands also induced apoptosis and dissipated T98G mitochondrial membrane potential. This suggests that the nature of the alkyl ether chain of pyrazolo[1,5-a]pyrimidine acetamides has little influence on TSPO affinity but is important for functional activity of this class of TSPO ligands.
Collapse
|