1
|
Leigh RS, Kaynak BL, Ruskoaho H, Välimäki MJ. Development and comparison of single FLT3-inhibitors to dual FLT3/TAF1-inhibitors as an anti-leukemic approach. PLoS One 2025; 20:e0320443. [PMID: 40153395 PMCID: PMC11952222 DOI: 10.1371/journal.pone.0320443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
Acute myeloid leukemia (AML) is characterized by several recurrent mutations that affect disease biology and phenotype, response to therapy and risk of subsequent relapse. Though tyrosine kinase inhibitors have gained regulatory approval for the treatment of AML, it is unclear whether single drugs targeting a specific genomic alteration will be sufficient to eradicate disease. Fortuitously, kinase/bromodomain inhibitors allow targeting of downstream transcriptional effectors of oncogenic pathways, allowing impediment of drug resistance at the transcriptional level. Successful development of combinatorial therapeutic strategies to inhibit both upstream oncogenic pathways and their downstream effectors could thus impede the onset of resistant disease. By using a combination of high-throughput cell-based screening assays and structure-based design, we have developed a novel anti-proliferative 3i-compound scaffold with a diverse range of single and dual FLT3/TAF1(2) activity against AML. Our novel approach to target both FLT3 kinase and TAF1(2) bromodomain efficiently maintained potency against haematological cancers. However, reference compounds and in vitro cell viability and cytotoxicity assays in cancer cell lines demonstrated superior effects of high affinity tyrosine kinase inhibition compared to inhibition of the TAF1 bromodomain. Our results highlight the feasibility of dual tyrosine kinase-bromodomain targeting to overcome disease mechanisms while also revealing the increased efficacy of FLT3-targeted compounds in AML.
Collapse
Affiliation(s)
- Robert S. Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bogac L. Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Colarusso E, Gazzillo E, Boccia E, Terracciano S, Bruno I, Bifulco G, Chini MG, Lauro G. Identification of Novel Bromodomain-Containing Protein 4 (BRD4) Binders through 3D Pharmacophore-Based Repositioning Screening Campaign. Molecules 2024; 29:4025. [PMID: 39274873 PMCID: PMC11397543 DOI: 10.3390/molecules29174025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
A 3D structure-based pharmacophore model built for bromodomain-containing protein 4 (BRD4) is reported here, specifically developed for investigating and identifying the key structural features of the (+)-JQ1 known inhibitor within the BRD4 binding site. Using this pharmacophore model, 273 synthesized and purchased compounds previously considered for other targets but yielding poor results were screened in a drug repositioning campaign. Subsequently, only six compounds showed potential as BRD4 binders and were subjected to further biophysical and biochemical assays. Compounds 2, 5, and 6 showed high affinity for BRD4, with IC50 values of 0.60 ± 0.25 µM, 3.46 ± 1.22 µM, and 4.66 ± 0.52 µM, respectively. Additionally, these compounds were tested against two other bromodomains, BRD3 and BRD9, and two of them showed high selectivity for BRD4. The reported 3D structure-based pharmacophore model proves to be a straightforward and useful tool for selecting novel BRD4 ligands.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Eleonora Boccia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Bauer N, Balourdas DI, Schneider JR, Zhang X, Berger LM, Berger BT, Schwalm MP, Klopp NA, Siveke JT, Knapp S, Joerger AC. Development of Potent Dual BET/HDAC Inhibitors via Pharmacophore Merging and Structure-Guided Optimization. ACS Chem Biol 2024; 19:266-279. [PMID: 38291964 PMCID: PMC10878397 DOI: 10.1021/acschembio.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024]
Abstract
Bromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound. Systematic structure-guided modification of both warheads then led to optimized binders that were superior in potency to both parent compounds, with the best molecules of this series binding to both BRD4 bromodomains as well as HDAC1/2 with EC50 values in the 100 nM range in cellular NanoBRET target engagement assays. For one of our lead molecules, we could also show the selective inhibition of HDAC1/2 over all other zinc-dependent HDACs. Importantly, this on-target activity translated into promising efficacy in pancreatic cancer and NUT midline carcinoma cells. Our lead molecules effectively blocked histone H3 deacetylation in pancreatic cancer cells and upregulated the tumor suppressor HEXIM1 and proapoptotic p57, both markers of BET inhibition. In addition, they have the potential to downregulate the oncogenic drivers of NUT midline carcinoma, as demonstrated for MYC and TP63 mRNA levels. Overall, this study expands the portfolio of available dual BET/class I HDAC inhibitors for future translational studies in different cancer models.
Collapse
Affiliation(s)
- Nicolas Bauer
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
| | - Joel R. Schneider
- Bridge
Institute of Experimental Tumor Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 45147 Essen, Germany
- Division
of Solid Tumor Translational Oncology, German
Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research
Center, DKFZ, 69120 Heidelberg, Germany
| | - Xin Zhang
- Bridge
Institute of Experimental Tumor Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 45147 Essen, Germany
- Division
of Solid Tumor Translational Oncology, German
Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research
Center, DKFZ, 69120 Heidelberg, Germany
| | - Lena M. Berger
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
| | - Benedict-Tilman Berger
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
| | - Martin P. Schwalm
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
- German
Translational Cancer Network (DKTK) Site Frankfurt/Mainz, Frankfurt am Main 60438, Germany
| | - Nick A. Klopp
- Bridge
Institute of Experimental Tumor Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 45147 Essen, Germany
- Division
of Solid Tumor Translational Oncology, German
Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research
Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Bridge
Institute of Experimental Tumor Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 45147 Essen, Germany
- Division
of Solid Tumor Translational Oncology, German
Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research
Center, DKFZ, 69120 Heidelberg, Germany
| | - Stefan Knapp
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
- German
Translational Cancer Network (DKTK) Site Frankfurt/Mainz, Frankfurt am Main 60438, Germany
| | - Andreas C. Joerger
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural
Genomics Consortium (SGC), Buchmann Institute
for Life Sciences, Max-von-Laue-Str.
15, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
4
|
Gazzillo E, Pierri M, Colarusso E, Chini MG, Ferraro MG, Piccolo M, Irace C, Bruno I, Bifulco G, Terracciano S, Lauro G. Exploring the chemical space of functionalized [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the bromodomain of BRD9. Bioorg Chem 2023; 139:106677. [PMID: 37352721 DOI: 10.1016/j.bioorg.2023.106677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Here we report a detailed structure-activity relationship (SAR) study related to [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the reader module of bromodomain containing-protein 9 (BRD9). 3D structure-based pharmacophore models, previously introduced by us, were here employed to evaluate a second generation of compounds, exploring different substitution patterns on the heterocyclic core. Starting from the promising data obtained from our previously identified [1,2,4]triazolo[4,3-a]quinoxaline-based compounds 1-4, the combination of in silico studies, chemical synthesis, biophysical and in vitro assays led to the identification of a new set of derivatives, selected for thoroughly exploring the chemical space of the bromodomain binding site. In more details, the investigation of different linkers at C-4 position highlighted the amine spacer as mandatory for the binding with the protein counterpart and the crucial role of the alkyl substituents at C-1 for increasing the selectivity toward BRD9. Additionally, the importance of a hydrogen bond donor group, critical to anchor the ZA region and required for the interaction with Ile53 residue, was inferred from the analysis of our collected results. Herein we also propose an optimization and an update of our previously reported "pharm-druglike2" 3D structure-based pharmacophore model, introducing it as "pharm-druglike2.1". Compounds 24-26, 32, 34 and 36 were identified as new valuable BRD9 binders featuring IC50 values in the low micromolar range. Among them, 24 and 36 displayed an excellent selectivity towards BRD9 and a good antiproliferative effect on a panel of leukemia models, especially toward CCRF-CEM cell line, with no cytotoxicity on healthy cells. Notably, the interaction of 24 and 36 with the bromodomain and PHD finger-containing protein 1 (BRPF1) also emerged, disclosing them as new and unexplored dual inhibitors for these two proteins highly involved in leukemia. These findings highlight the potential for the identification of new attractive dual epidrugs as well as a promising starting point for the development of chemical degraders endowed with anticancer activities.
Collapse
Affiliation(s)
- Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Martina Pierri
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche 86090, Italy
| | - Maria Grazia Ferraro
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| |
Collapse
|
5
|
Abstract
Bromodomains are acetyl-lysine binding modules that are found in different classes of chromatin-interacting proteins. Among these are large chromatin remodeling complexes such as BAF and PBAF (variants of human SWI/SNF). Previous work has identified chemical probes targeting a subset of the bromodomains present in the BAF and PBAF complexes. Selective inhibitors of the individual bromodomains have proven challenging to discover, as the domains are highly similar. Here, elaboration of an aminopyridazine scaffold used previously to develop probes for the bromodomains of SMARCA2, SMARCA4, and the fifth bromodomain of PBRM1 yielded compounds with both potency and unusual selectivity for the second bromodomain of PBRM1. One of these, GNE-235, and its enantiomer control GNE-234 are suggested for initial cellular investigations of the function of the second bromodomain of PBRM1.
Collapse
Affiliation(s)
- Andrea G Cochran
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Megan Flynn
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Cazzanelli G, Vedove AD, Parolin E, D'Agostino VG, Unzue A, Nevado C, Caflisch A, Lolli G. Reevaluation of bromodomain ligands targeting BAZ2A. Protein Sci 2023; 32:e4752. [PMID: 37574751 PMCID: PMC10464297 DOI: 10.1002/pro.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
BAZ2A promotes migration and invasion in prostate cancer. Two chemical probes, the specific BAZ2-ICR, and the BAZ2/BRD9 cross-reactive GSK2801, interfere with the recognition of acetylated lysines in histones by the bromodomains of BAZ2A and of its BAZ2B paralog. The two chemical probes were tested in prostate cancer cell lines with opposite androgen susceptibility. BAZ2-ICR and GSK2801 showed different cellular efficacies in accordance with their unequal selectivity profiles. Concurrent inhibition of BAZ2 and BRD9 did not reproduce the effects observed with GSK2801, indicating possible off-targets for this chemical probe. On the other hand, the single BAZ2 inhibition by BAZ2-ICR did not phenocopy genetic ablation, demonstrating that bromodomain interference is not sufficient to strongly affect BAZ2A functionality and suggesting a PROTAC-based chemical ablation as an alternative optimization strategy and a possible therapeutic approach. In this context, we also present the crystallographic structures of BAZ2A in complex with the above chemical probes. Binding poses of TP-238 and GSK4027, chemical probes for the bromodomain subfamily I, and two ligands of the CBP/EP300 bromodomains identify additional headgroups for the development of BAZ2A ligands.
Collapse
Affiliation(s)
- Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Eleonora Parolin
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Andrea Unzue
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Cristina Nevado
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZürichZürichSwitzerland
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
7
|
Leigh RS, Välimäki MJ, Kaynak BL, Ruskoaho HJ. TAF1 bromodomain inhibition as a candidate epigenetic driver of congenital heart disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166689. [PMID: 36958711 DOI: 10.1016/j.bbadis.2023.166689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
Heart formation requires transcriptional regulators that underlie congenital anomalies and the fetal gene program activated during heart failure. Attributing the effects of congenital heart disease (CHD) missense variants to disruption of specific protein domains allows for a mechanistic understanding of CHDs and improved diagnostics. A combined chemical and genetic approach was employed to identify novel CHD drivers, consisting of chemical screening during pluripotent stem cell (PSC) differentiation, gene expression analyses of native tissues and primary cell culture models, and the in vitro study of damaging missense variants from CHD patients. An epigenetic inhibitor of the TATA-Box Binding Protein Associated Factor 1 (TAF1) bromodomain was uncovered in an unbiased chemical screen for activators of atrial and ventricular fetal myosins in differentiating PSCs, leading to the development of a high affinity inhibitor (5.1 nM) of the TAF1 bromodomain, a component of the TFIID complex. TAF1 bromodomain inhibitors were tested for their effects on stem cell viability and cardiomyocyte differentiation, implicating a role for TAF1 in cardiogenesis. Damaging TAF1 missense variants from CHD patients were studied by mutational analysis of the TAF1 bromodomain, demonstrating a repressive role of TAF1 that can be abrogated by the introduction of damaging bromodomain variants or chemical TAF1 bromodomain inhibition. These results indicate that targeting the TAF1/TFIID complex with chemical compounds modulates cardiac transcription and identify an epigenetically-driven CHD mechanism due to damaging variants within the TAF1 bromodomain.
Collapse
Affiliation(s)
- Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Heikki J Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Barros EP, Ries B, Champion C, Rieder SR, Riniker S. Accounting for Solvation Correlation Effects on the Thermodynamics of Water Networks in Protein Cavities. J Chem Inf Model 2023; 63:1794-1805. [PMID: 36917685 PMCID: PMC10052353 DOI: 10.1021/acs.jcim.2c01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macromolecular recognition and ligand binding are at the core of biological function and drug discovery efforts. Water molecules play a significant role in mediating the protein-ligand interaction, acting as more than just the surrounding medium by affecting the thermodynamics and thus the outcome of the binding process. As individual water contributions are impossible to measure experimentally, a range of computational methods have emerged to identify hydration sites in protein pockets and characterize their energetic contributions for drug discovery applications. Even though several methods model solvation effects explicitly, they focus on determining the stability of specific water sites independently and neglect solvation correlation effects upon replacement of clusters of water molecules, which typically happens in hit-to-lead optimization. In this work, we rigorously determine the conjoint effects of replacing all combinations of water molecules in protein binding pockets through the use of the RE-EDS multistate free-energy method, which combines Hamiltonian replica exchange (RE) and enveloping distribution sampling (EDS). Applications on the small bovine pancreatic trypsin inhibitor and four proteins of the bromodomain family illustrate the extent of solvation correlation effects on water thermodynamics, with the favorability of replacement of the water sites by pharmacophore probes highly dependent on the composition of the water network and the pocket environment. Given the ubiquity of water networks in biologically relevant protein targets, we believe our approach can be helpful for computer-aided drug discovery by providing a pocket-specific and a priori systematic consideration of solvation effects on ligand binding and selectivity.
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Candide Champion
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Salomé R Rieder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Wang L, Wang Y, Yu Y, Liu D, Zhao J, Zhang L. Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. Molecules 2023; 28:molecules28062583. [PMID: 36985555 PMCID: PMC10052767 DOI: 10.3390/molecules28062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor–residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).
Collapse
|
10
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
11
|
Warstat R, Pervaiz M, Regenass P, Amann M, Schmidtkunz K, Einsle O, Jung M, Breit B, Hügle M, Günther S. A novel pan-selective bromodomain inhibitor for epigenetic drug design. Eur J Med Chem 2023; 249:115139. [PMID: 36736153 DOI: 10.1016/j.ejmech.2023.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
For a long time, the development of bromodomain (BD) inhibitors (BDi) was almost exclusively related to the BET family. More recently, BDi for BDs outside the BET family have also been developed. Here we present a novel pan-BDi with micromolar affinities to various BDs, and nanomolar affinities to representatives of BD families I, II (Bromodomain and Extra-Terminal Domain (BET) family), III, and IV. The inhibitor shows a broad activity profile with nanomolar growth inhibition (GI50) values on various cancer cell lines. Subsequently, we were able to control the selectivity of the inhibitor by simple modifications and turned it into a highly selective BRD9 inhibitor.
Collapse
Affiliation(s)
- Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Mehrosh Pervaiz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany
| | - Pierre Regenass
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Marius Amann
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Karin Schmidtkunz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Martin Hügle
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany.
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany
| |
Collapse
|
12
|
Colarusso E, Ceccacci S, Monti MC, Gazzillo E, Giordano A, Chini MG, Ferraro MG, Piccolo M, Ruggiero D, Irace C, Terracciano S, Bruno I, Bifulco G, Lauro G. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders. Eur J Med Chem 2023; 247:115018. [PMID: 36577218 DOI: 10.1016/j.ejmech.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 μM and IC50 = 0.14 ± 0.03 μM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Sara Ceccacci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Assunta Giordano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, Napoli, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
13
|
Ge Y, Baumann HM, Mobley DL. Absolute Binding Free Energy Calculations for Buried Water Molecules. J Chem Theory Comput 2022; 18:6482-6499. [PMID: 36197451 PMCID: PMC9873352 DOI: 10.1021/acs.jctc.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water often plays a key role in mediating protein-ligand interactions. Understanding contributions from active-site water molecules to binding thermodynamics of a ligand is important in predicting binding free energies for ligand optimization. In this work, we tested a non-equilibrium switching method for absolute binding free energy calculations on water molecules in binding sites of 13 systems. We discuss the lessons we learned about identified issues that affected our calculations and ways to address them. This work fits with our larger focus on how to do accurate ligand binding free energy calculations when water rearrangements are very slow, such as rearrangements due to ligand modification (as in relative free energy calculations) or ligand binding (as in absolute free energy calculations). The method studied in this work can potentially be used to account for limited water sampling via providing endpoint corrections to free energy calculations using our calculated binding free energy of water.
Collapse
Affiliation(s)
- Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, California92697, United States
| | - Hannah M Baumann
- Department of Pharmaceutical Sciences, University of California, Irvine, California92697, United States
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, California92697, United States
- Department of Chemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
14
|
Sekirnik A, Reynolds JK, See L, Bluck JP, Scorah AR, Tallant C, Lee B, Leszczynska KB, Grimley RL, Storer RI, Malattia M, Crespillo S, Caria S, Duclos S, Hammond EM, Knapp S, Morris GM, Duarte F, Biggin PC, Conway SJ. Identification of Histone Peptide Binding Specificity and Small-Molecule Ligands for the TRIM33α and TRIM33β Bromodomains. ACS Chem Biol 2022; 17:2753-2768. [PMID: 36098557 PMCID: PMC9594046 DOI: 10.1021/acschembio.2c00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TRIM33 is a member of the tripartite motif (TRIM) family of proteins, some of which possess E3 ligase activity and are involved in the ubiquitin-dependent degradation of proteins. Four of the TRIM family proteins, TRIM24 (TIF1α), TRIM28 (TIF1β), TRIM33 (TIF1γ) and TRIM66, contain C-terminal plant homeodomain (PHD) and bromodomain (BRD) modules, which bind to methylated lysine (KMen) and acetylated lysine (KAc), respectively. Here we investigate the differences between the two isoforms of TRIM33, TRIM33α and TRIM33β, using structural and biophysical approaches. We show that the N1039 residue, which is equivalent to N140 in BRD4(1) and which is conserved in most BRDs, has a different orientation in each isoform. In TRIM33β, this residue coordinates KAc, but this is not the case in TRIM33α. Despite these differences, both isoforms show similar affinities for H31-27K18Ac, and bind preferentially to H31-27K9Me3K18Ac. We used this information to develop an AlphaScreen assay, with which we have identified four new ligands for the TRIM33 PHD-BRD cassette. These findings provide fundamental new information regarding which histone marks are recognized by both isoforms of TRIM33 and suggest starting points for the development of chemical probes to investigate the cellular function of TRIM33.
Collapse
Affiliation(s)
- Angelina
R. Sekirnik
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jessica K. Reynolds
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Larissa See
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Joseph P. Bluck
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Amy R. Scorah
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Cynthia Tallant
- Nuffield
Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K.
| | - Bernadette Lee
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Katarzyna B. Leszczynska
- Oxford Institute
for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - Rachel L. Grimley
- Worldwide
Medicinal Chemistry, Discovery Biology, Pfizer Ltd, The Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - R. Ian Storer
- Worldwide
Medicinal Chemistry, Discovery Biology, Pfizer Ltd, The Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Marta Malattia
- Evotec (UK)
Ltd, 90 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Sara Crespillo
- Evotec (UK)
Ltd, 90 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Sofia Caria
- Evotec (UK)
Ltd, 90 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Stephanie Duclos
- Evotec (UK)
Ltd, 90 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Ester M. Hammond
- Oxford Institute
for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - Stefan Knapp
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany,Structural
Genomics Consortium, Buchmann Institute for Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Garrett M. Morris
- Department
of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, U.K.
| | - Fernanda Duarte
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Philip C. Biggin
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| |
Collapse
|
15
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
16
|
Taylor AM, Bailey C, Belmont LD, Campbell R, Cantone N, Côté A, Crawford TD, Cummings R, DeMent K, Duplessis M, Flynn M, Good AC, Huang HR, Joshi S, Leblanc Y, Murray J, Nasveschuk CG, Neiss A, Poy F, Romero FA, Sandy P, Tang Y, Tsui V, Zawadzke L, Sims RJ, Audia JE, Bellon SF, Magnuson SR, Albrecht BK, Cochran AG. GNE-064: A Potent, Selective, and Orally Bioavailable Chemical Probe for the Bromodomains of SMARCA2 and SMARCA4 and the Fifth Bromodomain of PBRM1. J Med Chem 2022; 65:11177-11186. [PMID: 35930799 DOI: 10.1021/acs.jmedchem.2c00662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.
Collapse
Affiliation(s)
- Alexander M Taylor
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Chris Bailey
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Lisa D Belmont
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Campbell
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Nico Cantone
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Alexandre Côté
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Terry D Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Cummings
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Kevin DeMent
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martin Duplessis
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Megan Flynn
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew C Good
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Hon-Ren Huang
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Shivangi Joshi
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Yves Leblanc
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher G Nasveschuk
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Adrianne Neiss
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Florence Poy
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - F Anthony Romero
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Sandy
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Yong Tang
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laura Zawadzke
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Robert J Sims
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - James E Audia
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven F Bellon
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven R Magnuson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian K Albrecht
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Andrea G Cochran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
17
|
Guest E, Cervantes LF, Pickett SD, Brooks CL, Hirst JD. Alchemical Free Energy Methods Applied to Complexes of the First Bromodomain of BRD4. J Chem Inf Model 2022; 62:1458-1470. [PMID: 35258972 PMCID: PMC9098113 DOI: 10.1021/acs.jcim.1c01229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 12/16/2022]
Abstract
Accurate and rapid predictions of the binding affinity of a compound to a target are one of the ultimate goals of computer aided drug design. Alchemical approaches to free energy estimations follow the path from an initial state of the system to the final state through alchemical changes of the energy function during a molecular dynamics simulation. Herein, we explore the accuracy and efficiency of two such techniques: relative free energy perturbation (FEP) and multisite lambda dynamics (MSλD). These are applied to a series of inhibitors for the bromodomain-containing protein 4 (BRD4). We demonstrate a procedure for obtaining accurate relative binding free energies using MSλD when dealing with a change in the net charge of the ligand. This resulted in an impressive comparison with experiment, with an average difference of 0.4 ± 0.4 kcal mol-1. In a benchmarking study for the relative FEP calculations, we found that using 20 lambda windows with 0.5 ns of equilibration and 1 ns of data collection for each window gave the optimal compromise between accuracy and speed. Overall, relative FEP and MSλD predicted binding free energies with comparable accuracy, an average of 0.6 kcal mol-1 for each method. However, MSλD makes predictions for a larger molecular space over a much shorter time scale than relative FEP, with MSλD requiring a factor of 18 times less simulation time for the entire molecule space.
Collapse
Affiliation(s)
- Ellen
E. Guest
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, U.K.
| | - Luis F. Cervantes
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen D. Pickett
- Computational
Chemistry, GlaxoSmithKline RD Pharmaceuticals, Stevenage SG1 2NY, U.K.
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan D. Hirst
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
18
|
Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques. J Chem Theory Comput 2022; 18:1359-1381. [PMID: 35148093 PMCID: PMC9241631 DOI: 10.1021/acs.jctc.1c00590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Water often plays a key role in protein structure, molecular recognition, and mediating protein-ligand interactions. Thus, free energy calculations must adequately sample water motions, which often proves challenging in typical MD simulation time scales. Thus, the accuracy of methods relying on MD simulations ends up limited by slow water sampling. Particularly, as a ligand is removed or modified, bulk water may not have time to fill or rearrange in the binding site. In this work, we focus on several molecular dynamics (MD) simulation-based methods attempting to help rehydrate buried water sites: BLUES, using nonequilibrium candidate Monte Carlo (NCMC); grand, using grand canonical Monte Carlo (GCMC); and normal MD. We assess the accuracy and efficiency of these methods in rehydrating target water sites. We selected a range of systems with varying numbers of waters in the binding site, as well as those where water occupancy is coupled to the identity or binding mode of the ligand. We analyzed the rehydration of buried water sites in binding pockets using both clustering of trajectories and direct analysis of electron density maps. Our results suggest both BLUES and grand enhance water sampling relative to normal MD and grand is more robust than BLUES, but also that water sampling remains a major challenge for all of the methods tested. The lessons we learned for these methods and systems are discussed.
Collapse
Affiliation(s)
- Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - David C Wych
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marley L Samways
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michael E Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
19
|
Karim RM, Yang L, Chen L, Bikowitz MJ, Lu J, Grassie D, Shultz ZP, Lopchuk JM, Chen J, Schönbrunn E. Discovery of Dual TAF1-ATR Inhibitors and Ligand-Induced Structural Changes of the TAF1 Tandem Bromodomain. J Med Chem 2022; 65:4182-4200. [PMID: 35191694 DOI: 10.1021/acs.jmedchem.1c01999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bromodomains regulate chromatin remodeling and gene transcription through recognition of acetylated lysines on histones and other proteins. Bromodomain-containing protein TAF1, a subunit of general transcription factor TFIID, initiates preinitiation complex formation and cellular transcription. TAF1 serves as a cofactor for certain oncogenic transcription factors and is implicated in regulating the p53 tumor suppressor. Therefore, TAF1 is a potential target to develop small molecule therapeutics for diseases arising from dysregulated transcription, such as cancer. Here, we report the ATR kinase inhibitor AZD6738 (Ceralasertib) and analogues thereof as bona fide inhibitors of TAF1. Crystallographic and small-angle X-ray scattering studies established that newly identified and previously reported inhibitors stabilize distinct structural states of the TAF1 tandem bromodomain through "open-closed" transitions and dimerization. Combined with functional studies on p53 signaling in cancer cell lines, the data provide new insights into the feasibility and challenges of TAF1 inhibitors as chemical probes and therapeutics.
Collapse
Affiliation(s)
- Rezaul Md Karim
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Leixiang Yang
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Lihong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Melissa J Bikowitz
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Junhao Lu
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Dylan Grassie
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Zachary P Shultz
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Justin M Lopchuk
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Jiandong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
20
|
Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK. A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. J Med Chem 2022; 65:2342-2360. [PMID: 35007061 DOI: 10.1021/acs.jmedchem.1c01779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain.
Collapse
Affiliation(s)
- Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mikael O Ellingson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Cole R Scholtz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Amani L Lee
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Shalil Khanal
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Vijay H Shah
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Khamees HA, Madegowda M, Ananda S, Sangappa Y, Al-Ostoot FH, Abad N. Synthesis, molecular structure, DFT studies, in silico docking and molecular dynamics simulations of 2,6 dimethoxychalcone derivatives as BRD4 inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Pierri M, Gazzillo E, Chini MG, Ferraro MG, Piccolo M, Maione F, Irace C, Bifulco G, Bruno I, Terracciano S, Lauro G. Introducing structure-based three-dimensional pharmacophore models for accelerating the discovery of selective BRD9 binders. Bioorg Chem 2021; 118:105480. [PMID: 34823196 DOI: 10.1016/j.bioorg.2021.105480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/18/2023]
Abstract
A well-structured in silico workflow is here reported for disclosing structure-based pharmacophore models against bromodomain-containing protein 9 (BRD9), accelerating virtual screening campaigns and facilitating the identification of novel binders. Specifically, starting from 23 known ligands co-crystallized with BRD9, three-dimensional pharmacophore models, namely placed in a reference protein structure, were developed. Specifically, we here introduce a fragment-related pharmacophore model, useful for the identification of new promising small chemical probes targeting the protein region responsible of the acetyllysine recognition, and two further pharmacophore models useful for the selection of compounds featuring drug-like properties. A pharmacophore-driven virtual screening campaign was then performed to facilitate the selection of new selective BRD9 ligands, starting from a large library of commercially available molecules. The identification of a promising BRD9 binder (7) prompted us to re-iterate this computational workflow on a second focused in-house built library of synthesizable compounds and, eventually, three further novel BRD9 binders were disclosed (8-10). Moreover, all these compounds were tested among a panel comprising other nine bromodomains, showing a high selectivity for BRD9. Preclinical bioscreens for potential anticancer activity highlighted compound 7 as that showing the most promising biological effects, proving the reliability of this in silico pipeline and confirming the applicability of the here introduced structure-based three-dimensional (3D) pharmacophore models as straightforward tools for the selection of new BRD9 ligands.
Collapse
Affiliation(s)
- Martina Pierri
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples 80131, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| |
Collapse
|
23
|
Barman S, Roy A, Bardhan I, Kandasamy T, Shivani S, Sudhamalla B. Insights into the Molecular Mechanisms of Histone Code Recognition by the BRPF3 Bromodomain. Chem Asian J 2021; 16:3404-3412. [PMID: 34448544 DOI: 10.1002/asia.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Bromodomains are evolutionarily conserved reader modules that recognize acetylated lysine residues on the histone tails to facilitate gene transcription. The bromodomain and PHD finger containing protein 3 (BRPF3) is a scaffolding protein that forms a tetrameric complex with HBO1 histone acetyltransferase (HAT) and two other subunits, which is known to regulate the HAT activity and substrate specificity. However, its molecular mechanism, histone ligands, and biological functions remain unknown. Herein, we identify mono- (H4K5ac) and di- (H4K5acK12ac) acetylated histone peptides as novel interacting partners of the BRPF3 bromodomain. Consistent with this, pull-down assays on purified histones from human cells confirm the interaction of BRPF3 bromodomain with acetylated histone H4. Further, MD simulation studies highlight the binding mode of acetyllysine (Kac) and the stability of bromodomain-histone peptide complexes. Collectively, our findings provide a key insight into how histone targets of the BRPF3 bromodomain direct the recruitment of HBO1 complex to chromatin for downstream transcriptional regulation.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Shivani Shivani
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
24
|
Vaidergorn MM, da Silva Emery F, Ganesan A. From Hit Seeking to Magic Bullets: The Successful Union of Epigenetic and Fragment Based Drug Discovery (EPIDD + FBDD). J Med Chem 2021; 64:13980-14010. [PMID: 34591474 DOI: 10.1021/acs.jmedchem.1c00787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review progress in the application of fragment-based drug discovery (FBDD) to epigenetic drug discovery (EPIDD) targeted at epigenetic writer and eraser enzymes as well as reader domains over the last 15 years. The greatest successes to date are in prospecting for bromodomain binding ligands. From a diverse array of fragment hits, multiple potent and selective compounds ensued, including the oncology clinical candidates mivebresib, ABBV-744, pelabresib, and PLX51107.
Collapse
Affiliation(s)
- Miguel M Vaidergorn
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
25
|
Lukac I, Wyatt PG, Gilbert IH, Zuccotto F. Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. J Comput Aided Mol Des 2021; 35:1025-1036. [PMID: 34458939 PMCID: PMC8523014 DOI: 10.1007/s10822-021-00416-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Water molecules play a crucial role in protein-ligand binding, and many tools exist that aim to predict the position and relative energies of these important, but challenging participants of biomolecular recognition. The available tools are, in general, capable of predicting the location of water molecules. However, predicting the effects of their displacement is still very challenging. In this work, a linear-scaling quantum mechanics-based approach was used to assess water network energetics and the changes in network stability upon ligand structural modifications. This approach offers a valuable way to improve understanding of SAR data and help guide compound design.
Collapse
Affiliation(s)
- Iva Lukac
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
26
|
Clegg MA, Theodoulou NH, Bamborough P, Chung CW, Craggs PD, Demont EH, Gordon LJ, Liwicki GM, Phillipou A, Tomkinson NCO, Prinjha RK, Humphreys PG. Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. ACS Med Chem Lett 2021; 12:1308-1317. [PMID: 34413961 DOI: 10.1021/acsmedchemlett.1c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Bromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology. Key to this work was the introduction and modulation of the basicity of a pendant amine which had a substantial impact on not only bromodomain selectivity but also cellular target engagement.
Collapse
Affiliation(s)
- Michael A. Clegg
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Natalie H. Theodoulou
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Paul Bamborough
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | | - Laurie J. Gordon
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Gemma M. Liwicki
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Alex Phillipou
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Nicholas C. O. Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | |
Collapse
|
27
|
Guest EE, Pickett SD, Hirst JD. Structural variation of protein-ligand complexes of the first bromodomain of BRD4. Org Biomol Chem 2021; 19:5632-5641. [PMID: 34105560 DOI: 10.1039/d1ob00658d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) family, plays a key role in several diseases, especially cancers. With increased interest in BRD4 as a therapeutic target, many X-ray crystal structures of the protein in complex with small molecule inhibitors are publicly available over the recent decade. In this study, we use this structural information to investigate the conformations of the first bromodomain (BD1) of BRD4. Structural alignment of 297 BRD4-BD1 complexes shows a high level of similarity between the structures of BRD4-BD1, regardless of the bound ligand. We employ WONKA, a tool for detailed analyses of protein binding sites, to compare the active site of over 100 of these crystal structures. The positions of key binding site residues show a high level of conformational similarity, with the exception of Trp81. A focused analysis on the highly conserved water network in the binding site of BRD4-BD1 is performed to identify the positions of these water molecules across the crystal structures. The importance of the water network is illustrated using molecular docking and absolute free energy perturbation simulations. 82% of the ligand poses were better predicted when including water molecules as part of the receptor. Our analysis provides guidance for the design of new BRD4-BD1 inhibitors and the selection of the best structure of BRD4-BD1 to use in structure-based drug design, an important approach for faster and more cost-efficient lead discovery.
Collapse
Affiliation(s)
- Ellen E Guest
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Stephen D Pickett
- GlaxoSmithKline R&D Pharmaceuticals, Computational Chemistry, Stevenage, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
28
|
Wang Y, Wu S, Wang L, Yang Z, Zhao J, Zhang L. Binding selectivity of inhibitors toward the first over the second bromodomain of BRD4: theoretical insights from free energy calculations and multiple short molecular dynamics simulations. RSC Adv 2020; 11:745-759. [PMID: 35423696 PMCID: PMC8693360 DOI: 10.1039/d0ra09469b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) plays an important role in mediating gene transcription involved in cancers and non-cancer diseases such as acute heart failure and inflammatory diseases. In this work, multiple short molecular dynamics (MSMD) simulations are integrated with a molecular mechanics generalized Born surface area (MM-GBSA) approach to decipher binding selectivity of three inhibitors 8NS, 82Y, and 837 toward two domains BD1 and BD2 of BRD4. The results demonstrate that the enthalpy effects play critical roles in selectivity identification of inhibitors toward BD1 and BD2, determining that 8NS has better selectivity toward BD2 than BD1, while 82Y and 837 more favorably bind to BD1 than BD2. A residue-based free-energy decomposition method was used to calculate an inhibitor-residue interaction spectrum and unveil contributions of separate residues to binding selectivity. The results identify six common residues, containing (P82, P375), (V87, V380), (L92, L385), (L94, L387), (N140, N433), and (I146, V439) individually belonging to (BD1, BD2) of BRD4, and yield a considerable binding difference of inhibitors to BD1 and BD2, suggesting that these residues play key roles in binding selectivity of inhibitors toward BD1 and BD2 of BRD4. Therefore, these results provide useful dynamics information and a structure affinity relationship for the development of highly selective inhibitors targeting BD1 and BD2 of BRD4.
Collapse
Affiliation(s)
- Yan Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lifei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University Nanchang 330045 China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| |
Collapse
|
29
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. J Chem Theory Comput 2020; 16:6061-6076. [PMID: 32955877 DOI: 10.1021/acs.jctc.0c00660] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prediction of protein-ligand binding affinities using free energy perturbation (FEP) is becoming increasingly routine in structure-based drug discovery. Most FEP packages use molecular dynamics (MD) to sample the configurations of proteins and ligands, as MD is well-suited to capturing coupled motion. However, MD can be prohibitively inefficient at sampling water molecules that are buried within binding sites, which has severely limited the domain of applicability of FEP and its prospective usage in drug discovery. In this paper, we present an advancement of FEP that augments MD with grand canonical Monte Carlo (GCMC), an enhanced sampling method, to overcome the problem of sampling water. We accomplished this without degrading computational performance. On both old and newly assembled data sets of protein-ligand complexes, we show that the use of GCMC in FEP is essential for accurate and robust predictions for ligand perturbations that disrupt buried water.
Collapse
Affiliation(s)
- Gregory A Ross
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ellery Russell
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Yuqing Deng
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Chao Lu
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Edward D Harder
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Lingle Wang
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
31
|
Dolbois A, Batiste L, Wiedmer L, Dong J, Brütsch M, Huang D, Deerain NM, Spiliotopoulos D, Cheng-Sánchez I, Laul E, Nevado C, Śledź P, Caflisch A. Hitting a Moving Target: Simulation and Crystallography Study of ATAD2 Bromodomain Blockers. ACS Med Chem Lett 2020; 11:1573-1580. [PMID: 32832026 DOI: 10.1021/acsmedchemlett.0c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Small molecule ligand binding to the ATAD2 bromodomain is investigated here through the synergistic combination of molecular dynamics and protein crystallography. A previously unexplored conformation of the binding pocket upon rearrangement of the gatekeeper residue Ile1074 has been found. Further, our investigations reveal how minor structural differences in the ligands result in binding with different plasticity of the ZA loop for this difficult-to-drug bromodomain.
Collapse
Affiliation(s)
- Aymeric Dolbois
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Laurent Batiste
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lars Wiedmer
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jing Dong
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Manuela Brütsch
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Danzhi Huang
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicholas M Deerain
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Iván Cheng-Sánchez
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Eleen Laul
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Paweł Śledź
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Chemistry and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Clegg MA, Bamborough P, Chung CW, Craggs PD, Gordon L, Grandi P, Leveridge M, Lindon M, Liwicki GM, Michon AM, Molnar J, Rioja I, Soden PE, Theodoulou NH, Werner T, Tomkinson NCO, Prinjha RK, Humphreys PG. Application of Atypical Acetyl-lysine Methyl Mimetics in the Development of Selective Inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains. J Med Chem 2020; 63:5816-5840. [PMID: 32410449 DOI: 10.1021/acs.jmedchem.0c00075] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-molecule ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) methyl mimetics to take advantage of the differential stability of conserved water molecules in the bromodomain binding site. Discovery of the n-butyl group as an atypical KAc methyl mimetic allowed generation of 31 (GSK6776) as a soluble, permeable, and selective BRD7/9 inhibitor from a pyridazinone template. The n-butyl group was then used to enhance the bromodomain selectivity of an existing BRD9 inhibitor and to transform pan-bromodomain inhibitors into BRD7/9 selective compounds. Finally, a solvent-exposed vector was defined from the pyridazinone template to enable bifunctional molecule synthesis, and affinity enrichment chemoproteomic experiments were used to confirm several of the endogenous protein partners of BRD7 and BRD9, which form part of the chromatin remodeling PBAF and BAF complexes, respectively.
Collapse
Affiliation(s)
- Michael A Clegg
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Paul Bamborough
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Peter D Craggs
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Laurie Gordon
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Paola Grandi
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Melanie Leveridge
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Matthew Lindon
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Gemma M Liwicki
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Anne-Marie Michon
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Judit Molnar
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Inmaculada Rioja
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Peter E Soden
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Natalie H Theodoulou
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Thilo Werner
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K Prinjha
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | | |
Collapse
|
33
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
34
|
Wang LF, Wang Y, Yang ZY, Zhao J, Sun HB, Wu SL. Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:373-398. [PMID: 32496901 DOI: 10.1080/1062936x.2020.1748107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidences indicate bromodomain-containing proteins 2 and 4 (BRD2 and BRD4) play critical roles in cancers, inflammations, cardiovascular diseases and other pathologies. Multiple short molecular dynamics (MSMD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method were applied to investigate the binding selectivity of three inhibitors 87D, 88M and 89G towards BRD2 over BRD4. The root-mean-square fluctuation (RMSF) analysis indicates that the structural flexibility of BRD4 is stronger than that of BRD2. Moreover the calculated distances between the Cα atoms in the centres of the ZA_loop and BC_loop of BRD4 are also bigger than that of BRD2. The rank of binding free energies calculated using MM-GBSA method agrees well with that determined by experimental data. The results show that 87D can bind more favourably to BRD2 than BRD4, while 88M has better selectivity on BRD4 over BRD2. Residue-based free-energy decomposition method was utilized to estimate the inhibitor-residue interaction spectrum and the results not only identify the hot interaction spots of inhibitors with BRD2 and BRD4, but also demonstrate that several common residues, including (W370, W374), (P371, P375), (V376, V380) and (L381, L385) belonging to (BRD2, BRD4), generate significant binding difference of inhibitors to BRD2 and BRD4.
Collapse
Affiliation(s)
- L F Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Y Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Z Y Yang
- Department of Physics, Jiangxi Agricultural University , Nanchang, China
| | - J Zhao
- School of Science, Shandong Jiaotong University , Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University , Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University , Jinan, China
| |
Collapse
|
35
|
Lucas SCC, Atkinson SJ, Bamborough P, Barnett H, Chung CW, Gordon L, Mitchell DJ, Phillipou A, Prinjha RK, Sheppard RJ, Tomkinson NCO, Watson RJ, Demont EH. Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. J Med Chem 2020; 63:5212-5241. [DOI: 10.1021/acs.jmedchem.0c00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simon C. C. Lucas
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Nicholas C. O. Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | |
Collapse
|
36
|
Wisniewski A, Georg GI. BET proteins: Investigating BRDT as a potential target for male contraception. Bioorg Med Chem Lett 2020; 30:126958. [PMID: 32019712 PMCID: PMC7023680 DOI: 10.1016/j.bmcl.2020.126958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
While many contraception options are available for women, birth control methods for men are limited to condoms and vasectomy. Past research into male contraceptives has focused on hormonal options but the associated side effects have thus far precluded this method from reaching the market. Non-hormonal male contraceptives and vas occlusion have also been explored, but to date no method has progressed past clinical testing. Recent interest in epigenetic research has unveiled a new potential non-hormonal male contraceptive target: the testis-specific bromodomain BRDT. Potent inhibitors for bromodomain-containing proteins are described in the literature, but a BRDT-specific compound has yet to be designed, prepared and tested. The high similarity between bromodomain proteins of the BET family makes development of selective and specific inhibitors both difficult and necessary. Selective inhibition of BRDT by a small molecule is an exciting new target in the search for a new non-hormonal male contraceptive.
Collapse
Affiliation(s)
- Andrea Wisniewski
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States.
| |
Collapse
|
37
|
Rodríguez Y, Gerona-Navarro G, Osman R, Zhou MM. In silico design and molecular basis for the selectivity of Olinone toward the first over the second bromodomain of BRD4. Proteins 2020; 88:414-430. [PMID: 31587361 PMCID: PMC6982606 DOI: 10.1002/prot.25818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023]
Abstract
Bromodomains (BrDs), a conserved structural module in chromatin-associated proteins, are well known for recognizing ε-N-acetyl lysine residues on histones. One of the most relevant BrDs is BRD4, a tandem BrD containing protein (BrD1 and BrD2) that plays a critical role in numerous diseases including cancer. Growing evidence shows that the two BrDs of BRD4 have different biological functions; hence selective ligands that can be used to study their functions are of great interest. Here, as a follow-up of our previous work, we first provide a detailed characterization study of the in silico rational design of Olinone as part of a series of five tetrahydropyrido indole-based compounds as BRD4 BrD1 inhibitors. Additionally, we investigated the molecular basis for Olinone's selective recognition by BrD1 over BrD2. Molecular dynamics simulations, free energy calculations, and conformational analyses of the apo-BRD4-BrD1|2 and BRD4-BrD1|2/Olinone complexes showed that Olinone's selectivity is facilitated by five key residues: Leu92 in BrD1|385 in BrD2 of ZA loop, Asn140|433, Asp144|His437 and Asp145|Glu438 of BC loop, and Ile146|Val49 of helix C. Furthermore, the difference in hydrogen bonds number and in mobility of the ZA and BC loops of the acetyl-lysine binding site between BRD4 BrD1/Olinone and BrD2/Olinone complexes also contribute to the difference in Olinone's binding affinity and selectivity toward BrD1 over BrD2. Altogether, our computer-aided molecular design techniques can effectively guide the development of small-molecule BRD4 BrD1 inhibitors, explain their selectivity origin, and further open doors to the design of new therapeutically improved derivatives.
Collapse
Affiliation(s)
- Yoel Rodríguez
- Department of Natural Sciences, Hostos Community
College of CUNY, Bronx, NY 10451, USA,Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Corresponding Authors: Yoel Rodríguez.
Address: Department of Natural Sciences, Room A-507F, Hostos Community College
of CUNY, Bronx, NY 10451, USA. Phone: +1 (718) 518-4134, Fax: +1 (718) 518-1120.
- ; Ming-Ming Zhou. Address: Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, Box 1677, New York, NY 10029, USA. Phone: +1 (212) 659-8652.
Fax: +1 (212) 849-2456.
| | - Guillermo Gerona-Navarro
- Department of Chemistry, Brooklyn College, 2900
Bedford Avenue, Room 351 NE, Brooklyn, NY 11210, USA,Ph.D. Program in Chemistry. The Graduate Center of
The City University of New York, NY 10016, USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Corresponding Authors: Yoel Rodríguez.
Address: Department of Natural Sciences, Room A-507F, Hostos Community College
of CUNY, Bronx, NY 10451, USA. Phone: +1 (718) 518-4134, Fax: +1 (718) 518-1120.
- ; Ming-Ming Zhou. Address: Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, Box 1677, New York, NY 10029, USA. Phone: +1 (212) 659-8652.
Fax: +1 (212) 849-2456.
| |
Collapse
|
38
|
Remillard D, Buckley DL, Seo HS, Ferguson FM, Dhe-Paganon S, Bradner JE, Gray NS. Dual Inhibition of TAF1 and BET Bromodomains from the BI-2536 Kinase Inhibitor Scaffold. ACS Med Chem Lett 2019; 10:1443-1449. [PMID: 31620231 DOI: 10.1021/acsmedchemlett.9b00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the dual bromodomains of TAF1 (TAF1(1,2)) as synergistic with BET inhibition in cellular cancer models, engendering interest in TAF/BET polypharmacology. Here, we examine structure activity relationships within the BI-2536 PLK1 kinase inhibitor scaffold, previously reported to bind BRD4. We examine binding by this ligand to TAF1(2) and apply structure guided design strategies to discriminate binding to both the PLK1 kinase and BRD4(1) bromodomain while retaining activity on TAF1(2). Through this effort we discover potent dual inhibitors of TAF1(2)/BRD4(1), as well as biased derivatives showing marked TAF1 selectivity. We resolve X-ray crystallographic data sets to examine the mechanisms of the observed TAF1 selectivity and to provide a resource for further development of this scaffold.
Collapse
Affiliation(s)
- David Remillard
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
| | - Dennis L. Buckley
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
| | - Fleur M. Ferguson
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston Massachusetts 02115, United States
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
| | - James E. Bradner
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston Massachusetts 02115, United States
| |
Collapse
|
39
|
Design, synthesis and biological evaluation of 3,5-dimethylisoxazole and pyridone derivatives as BRD4 inhibitors. Bioorg Med Chem Lett 2019; 29:126577. [DOI: 10.1016/j.bmcl.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022]
|
40
|
Bamborough P, Chung CW, Demont EH, Bridges AM, Craggs PD, Dixon DP, Francis P, Furze RC, Grandi P, Jones EJ, Karamshi B, Locke K, Lucas SCC, Michon AM, Mitchell DJ, Pogány P, Prinjha RK, Rau C, Roa AM, Roberts AD, Sheppard RJ, Watson RJ. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J Med Chem 2019; 62:7506-7525. [PMID: 31398032 DOI: 10.1021/acs.jmedchem.9b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paola Grandi
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | | | | | | | | | | | | | | | | | - Christina Rau
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | - Ana Maria Roa
- GlaxoSmithKline Tres Cantos , 28760 Tres Cantos , Madrid , Spain
| | | | | | | |
Collapse
|
41
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
42
|
Huang L, Li H, Li L, Niu L, Seupel R, Wu C, Cheng W, Chen C, Ding B, Brennan PE, Yang S. Discovery of Pyrrolo[3,2-d]pyrimidin-4-one Derivatives as a New Class of Potent and Cell-Active Inhibitors of P300/CBP-Associated Factor Bromodomain. J Med Chem 2019; 62:4526-4542. [PMID: 30998845 DOI: 10.1021/acs.jmedchem.9b00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Luyi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, P. R. China
| | - Lu Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Raina Seupel
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bisen Ding
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Paul E. Brennan
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
43
|
Design, synthesis and biological evaluation of imidazo[1,5-a]pyrazin-8(7H)-one derivatives as BRD9 inhibitors. Bioorg Med Chem 2019; 27:1391-1404. [DOI: 10.1016/j.bmc.2019.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
|
44
|
Clinical candidates modulating protein-protein interactions: The fragment-based experience. Eur J Med Chem 2019; 167:76-95. [DOI: 10.1016/j.ejmech.2019.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
|
45
|
Nittinger E, Gibbons P, Eigenbrot C, Davies DR, Maurer B, Yu CL, Kiefer JR, Kuglstatter A, Murray J, Ortwine DF, Tang Y, Tsui V. Water molecules in protein–ligand interfaces. Evaluation of software tools and SAR comparison. J Comput Aided Mol Des 2019; 33:307-330. [DOI: 10.1007/s10822-019-00187-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
|
46
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
47
|
Yokoyama T, Matsumoto K, Ostermann A, Schrader TE, Nabeshima Y, Mizuguchi M. Structural and thermodynamic characterization of the binding of isoliquiritigenin to the first bromodomain of BRD4. FEBS J 2019; 286:1656-1667. [DOI: 10.1111/febs.14736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Andreas Ostermann
- Heinz Maier‐Leibnitz Zentrum (MLZ) Technische Universtät München Garching Germany
| | - Tobias E. Schrader
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS) at Heinz Maier‐Leibnitz Zentrum (MLZ) Garching Germany
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences University of Toyama Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences University of Toyama Japan
- Graduate School of Innovative Life Science University of Toyama Japan
| |
Collapse
|
48
|
Zhong H, Wang Z, Wang X, Liu H, Li D, Liu H, Yao X, Hou T. Importance of a crystalline water network in docking-based virtual screening: a case study of BRD4. Phys Chem Chem Phys 2019; 21:25276-25289. [DOI: 10.1039/c9cp04290c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a member of the bromodomain and extra terminal domain (BET) protein family, bromodomain-containing protein 4 (BRD4) is an epigenetic reader and can recognize acetylated lysine residues in histones.
Collapse
Affiliation(s)
- Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- College of Pharmaceutical Sciences
| | - Zhe Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Xuwen Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Hui Liu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
49
|
Solvents to Fragments to Drugs: MD Applications in Drug Design. Molecules 2018; 23:molecules23123269. [PMID: 30544890 PMCID: PMC6321499 DOI: 10.3390/molecules23123269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023] Open
Abstract
Simulations of molecular dynamics (MD) are playing an increasingly important role in structure-based drug discovery (SBDD). Here we review the use of MD for proteins in aqueous solvation, organic/aqueous mixed solvents (MDmix) and with small ligands, to the classic SBDD problems: Binding mode and binding free energy predictions. The simulation of proteins in their condensed state reveals solvent structures and preferential interaction sites (hot spots) on the protein surface. The information provided by water and its cosolvents can be used very effectively to understand protein ligand recognition and to improve the predictive capability of well-established methods such as molecular docking. The application of MD simulations to the study of the association of proteins with drug-like compounds is currently only possible for specific cases, as it remains computationally very expensive and labor intensive. MDmix simulations on the other hand, can be used systematically to address some of the common tasks in SBDD. With the advent of new tools and faster computers we expect to see an increase in the application of mixed solvent MD simulations to a plethora of protein targets to identify new drug candidates.
Collapse
|
50
|
Wakchaure P, Velayutham R, Roy KK. Structure investigation, enrichment analysis and structure-based repurposing of FDA-approved drugs as inhibitors of BET-BRD4. J Biomol Struct Dyn 2018; 37:3048-3057. [PMID: 30079805 DOI: 10.1080/07391102.2018.1507838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report herein detailed structural insights into the ligand recognition modes guiding bromodomain selectivity, enrichment analysis and docking-based database screening for the identification of the FDA-approved drugs that have potential to be the human BRD4 inhibitors. Analysis of multiple X-ray structures prevailed that the lysine-recognition sites are highly conserved, and apparently, the dynamic ZA loop guides the specific ligand-recognition. The protein-ligand interaction profiling revealed that both BRD2 and BRD4 shared hydrophobic interaction of bound ligands with PRO-98/PRO-82, PHE-99/PHE-83, LEU-108/LEU-92 and direct H-bonding with ASN-156/ASN-140 (BRD2/BRD4), while on the other hand the water-mediated H-bonding of bound ligands with PRO-82, GLN-85, PRO-86, VAL-87, ASP-88, LEU-92, TYR-97 and MET-132, and aromatic π-π stacking with TRP-81 prevailed as unique interaction in BRD4, and were not observed in BRD2. Subsequently, through ROC curve analysis, the best enrichment was found with PDB-ID 4QZS of BRD4 structures. Finally, through docking-based database screening study, we found that several drugs have better binding affinity than the control candidate lead (+)-JQ1 (Binding affinity = -7.9 kcal/mol), a well-known BRD4 inhibitor. Among the top-ranked drugs, azelastine, a selective histamine H1 receptor antagonist, showed the best binding affinity of -9.3 kcal/mol and showed interactions with several key residues of the acetyl lysine binding pocket. Azelastine may serve as a promising template for further medicinal chemistry. These insights may serve as basis for structure-based drug design, drug repurposing and the discovery of novel BRD4 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Padmaja Wakchaure
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Kolkata , India
| | - Ravichandiran Velayutham
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Kolkata , India
| | - Kuldeep K Roy
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Kolkata , India
| |
Collapse
|