1
|
Valaka AP, Nyström H, Håversen L, Benitez-Martin C, Schäfer C, Jang WS, Camponeschi A, Andréasson J, Borén J, Grøtli M. Design and application of a fluorescent probe for imaging of endogenous Bruton's tyrosine kinase with preserved enzymatic activity. RSC Chem Biol 2025; 6:618-629. [PMID: 40026844 PMCID: PMC11867108 DOI: 10.1039/d4cb00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Fluorophore integration into proteins within living cells is essential for exploring proteins in their natural environment. Bruton's tyrosine kinase (BTK), is a validated oncology target and is crucial for B cell proliferation and activation. Developing BTK-labelling probes is key to understand BTK's dynamic signalling pathway. In this work, we aimed to develop a novel fluorescent labelling probe for endogenous BTK imaging while preserving its enzymatic activity. Evobrutinib, a second-generation BTK inhibitor with high selectivity, was chosen as the scaffold. We designed two probes, Evo-1 and Evo-2, with a BODIPY fluorescent group, guided by molecular modelling. The synthesis was achieved using optimised Suzuki-Miyaura cross-coupling and amide coupling reactions. Biochemical assays confirmed covalent binding to Cys481 of BTK while preserving its enzymatic activity. Labelling of endogenous BTK with Evo-2 with reduced off-target effects in Ramos cells was validated in cellular assays. The dynamic signalling pathway of BTK in its native environment was investigated by confocal microscopy with Evo-2. This methodology is a valuable asset in the chemical biology toolbox for studying protein dynamics and interactions in real time without interfering with the protein activity.
Collapse
Affiliation(s)
- Anna P Valaka
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Hampus Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital 413 45 Gothenburg Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Woo Suk Jang
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg 413 46 Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg 413 46 Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Gothenburg Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital 413 45 Gothenburg Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| |
Collapse
|
2
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2025; 45:629-653. [PMID: 39287197 PMCID: PMC11796325 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Philip E. Bourne
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Abdo EL, Ajib I, El Mounzer J, Husseini M, Kalaoun G, Matta TM, Mosleh R, Nasr F, Richani N, Khalil A, Shayya A, Ghanem H, Faour WH. Molecular biology of the novel anticancer medications: a focus on kinases inhibitors, biologics and CAR T-cell therapy. Inflamm Res 2025; 74:41. [PMID: 39960501 DOI: 10.1007/s00011-025-02008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Cancer treatment underwent significant changes in the last few years with the introduction of novel treatments targeting the immune system. OBJECTIVES The objective of this review is to discuss novel anticancer drugs including kinase inhibitors, biologics and cellular therapy with CAR-T cells. METHODS Most recent research articles were extracted from PubMed using keywords such as "kinases inhibitors", "CAR-T cell therapy". RESULTS AND DISCUSSION The number of kinase inhibitors is significantly increasing due to their demonstrated effectiveness in combination with biologics. CAR-T represented a major breakthrough in the field. Also, it focused on their mechanisms of action and the rational of their use either alone or in combination in relation to their modes of action.
Collapse
Affiliation(s)
- Elia-Luna Abdo
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Imad Ajib
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Jason El Mounzer
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Mohammad Husseini
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Gharam Kalaoun
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Tatiana-Maria Matta
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Reine Mosleh
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Fidel Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Nour Richani
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Anwar Shayya
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Hady Ghanem
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
4
|
Xu G, Zhang W, Du J, Cong J, Wang P, Li X, Si X, Wei B. Binding mechanism of inhibitors to DFG-in and DFG-out P38α deciphered using multiple independent Gaussian accelerated molecular dynamics simulations and deep learning. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:101-126. [PMID: 40110797 DOI: 10.1080/1062936x.2025.2475407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
P38α has been identified as a key target for drug design to treat a wide range of diseases. In this study, multiple independent Gaussian accelerated molecular dynamics (GaMD) simulations, deep learning (DL), and the molecular mechanics generalized Born surface area (MM-GBSA) method were used to investigate the binding mechanism of inhibitors (SB2, SK8, and BMU) to DFG-in and DFG-out P38α and clarify the effect of conformational differences in P38α on inhibitor binding. GaMD trajectory-based DL effectively identified important functional domains, such as the A-loop and N-sheet. Post-processing analysis on GaMD trajectories showed that binding of the three inhibitors profoundly affected the structural flexibility and dynamical behaviour of P38α situated at the DFG-in and DFG-out states. The MM-GBSA calculations not only revealed that differences in the binding ability of inhibitors are affected by DFG-in and DFG-out conformations of P38α, but also confirmed that van der Waals interactions are the primary force driving inhibitor-P38α binding. Residue-based free energy estimation identifies hot spots of inhibitor-P38α binding across DFG-in and DFG-out conformations, providing potential target sites for drug design towards P38α. This work is expected to offer valuable theoretical support for the development of selective inhibitors of P38α family members.
Collapse
Affiliation(s)
- G Xu
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - W Zhang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Du
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Cong
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - P Wang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Li
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Si
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - B Wei
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
5
|
Reimer BM, Awoonor-Williams E, Golosov AA, Hornak V. CovCysPredictor: Predicting Selective Covalently Modifiable Cysteines Using Protein Structure and Interpretable Machine Learning. J Chem Inf Model 2025; 65:544-553. [PMID: 39780548 DOI: 10.1021/acs.jcim.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Targeted covalent inhibition is a powerful therapeutic modality in the drug discoverer's toolbox. Recent advances in covalent drug discovery, in particular, targeting cysteines, have led to significant breakthroughs for traditionally challenging targets such as mutant KRAS, which is implicated in diverse human cancers. However, identifying cysteines for targeted covalent inhibition is a difficult task, as experimental and in silico tools have shown limited accuracy. Using the recently released CovPDB and CovBinderInPDB databases, we have trained and tested interpretable machine learning (ML) models to identify cysteines that are liable to be covalently modified (i.e., "ligandable" cysteines). We explored myriad physicochemical features (pKa, solvent exposure, residue electrostatics, etc.) and protein-ligand pocket descriptors in our ML models. Our final logistic regression model achieved a median F1 score of 0.73 on held-out test sets. When tested on a small sample of holo proteins, our model also showed reasonable performance, accurately predicting the most ligandable cysteine in most cases. Taken together, these results indicate that we can accurately predict potential ligandable cysteines for targeted covalent drug discovery, privileging cysteines that are more likely to be selective rather than purely reactive. We release this tool to the scientific community as CovCysPredictor.
Collapse
Affiliation(s)
- Bryn Marie Reimer
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Manning College of Information & Computer Sciences, University of Massachusetts Amherst, 140 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Ernest Awoonor-Williams
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei A Golosov
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Zhao Z, Bourne PE. Exploring Extended Warheads toward Developing Cysteine-Targeted Covalent Kinase Inhibitors. J Chem Inf Model 2024; 64:9517-9527. [PMID: 39656065 DOI: 10.1021/acs.jcim.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In designing covalent kinase inhibitors (CKIs), the inclusion of electrophiles as attacking warheads demands careful choreography, ensuring not only their presence on the scaffold moiety but also their precise interaction with nucleophiles in the binding sites. Given the limited number of known electrophiles, exploring adjacent chemical space to broaden the palette of available electrophiles capable of covalent inhibition is desirable. Here, we systematically analyze the characteristics of warheads and the corresponding adjacent fragments for use in CKI design. We first collect all the released cysteine-targeted CKIs from multiple databases and create one CKI data set containing 16,961 kinase-inhibitor data points from 12,381 unique CKIs covering 146 kinases with accessible cysteines in their binding pockets. Then, we analyze this data set, focusing on the extended warheads (i.e., warheads + adjacent fragments)─including 30 common warheads and 1344 unique adjacent fragments. In so doing, we provide structural insights and delineate chemical properties and patterns in these extended warheads. Notably, we highlight the popular patterns observed within reversible CKIs for the popular warheads cyanoacrylamide and aldehyde. This study provides medicinal chemists with novel insights into extended warheads and a comprehensive source of adjacent fragments, thus guiding the design, synthesis, and optimization of CKIs.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Ficarro SB, Marto ZH, Girardi NM, Deng D, Maisonet IJ, Adelmant G, Fleming LE, Sharafi M, Tavares I, Zhao A, Kim H, Seo HS, Dhe-Paganon S, Buhrlage SJ, Marto JA. Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100198. [PMID: 39622293 DOI: 10.1016/j.slasd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Target-based screening of covalent fragment libraries with mass spectrometry has emerged as a powerful strategy to identify chemical starting points for small molecule inhibitors or find new binding pockets on proteins of interest. These libraries span diverse chemical space with a modest number of compounds. Screening covalent fragments against purified protein targets reduces the demands on the mass spectrometer with respect to absolute throughput, detection limit, and dynamic range. Given these relaxed analytical requirements, we sought to develop an open-source, medium-throughput mass spectrometry system for target-based covalent fragment screening. Our platform comprises automated, dual LC desalting columns integrated with electrospray ionization for rapid sample introduction and mass spectrometry detection. The system is operated through a simple Python graphical user interface running on commodity microcontroller boards which allow integration with diverse liquid chromatography and mass spectrometry instruments. We provide scripts for fragment pooling, construction of sample batches, along with routines for data processing and visualization. The system enables primary screening of ∼10,000 covalent fragments per day in pooled format. In a proof-of-concept study we executed primary and secondary screens to identify 27 hit fragments against UCHL1, a deubiquitinating enzyme that is emerging as a drug target of interest across multiple clinical indications. We validated and triaged these covalent compounds through a series of orthogonal biochemical and chemoproteomic assays. The most promising chloroacetamide covalent fragment inhibited UCHL1 activity in vitro (IC50 < 5 µM) and exhibited dose-dependent binding along with good selectivity against 57 cellular DUBs as quantified by activity-based protein profiling.
Collapse
Affiliation(s)
- Scott B Ficarro
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zachary H Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas M Girardi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dingyu Deng
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella Jaen Maisonet
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura E Fleming
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mona Sharafi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Isidoro Tavares
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Zhao
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - HyoJeon Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Yuan B, Feng Y, Ma M, Duan W, Wu Y, Liu J, Zhao HY, Yang Z, Zhang SQ, Xin M. Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation. J Med Chem 2024; 67:20076-20099. [PMID: 39561981 DOI: 10.1021/acs.jmedchem.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Targeting the lysine residue of protein kinases to develop covalent inhibitors is an emerging hotspot. Herein, we have reported an approach to develop lysine-targeted covalent inhibitors of PI3Kδ by in situ interaction upgradation of the H-bonding to covalent bonding. Several warhead groups were introduced and screened in situ, leading to lysine-targeted covalent inhibitors bearing aromatic esters with high bioactivity and PI3Kδ selectivity. Compound A11 bearing phenolic ester was finally optimized to show a long duration of action in SU-DHL-6 cells by multiple assays. Docking simulation and further protein mass spectrometry confirmed that A11 bound to PI3Kδ by covalent-bonding interactions with Lys779. Furthermore, A11 exhibited potently antitumor efficacy without obvious toxicity in the SU-DHL-6 and Pfeiffer xenograft mouse models. This study identified A11 to be a much more effective antitumor agent in vitro and in vivo as a lysine-targeted covalent inhibitor, and it also provided a practical approach for the development of lysine-targeted covalent inhibitors.
Collapse
Affiliation(s)
- Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yifan Feng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Weiming Duan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Hong-Yi Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
9
|
Bálint D, Póti ÁL, Alexa A, Sok P, Albert K, Torda L, Földesi-Nagy D, Csókás D, Turczel G, Imre T, Szarka E, Fekete F, Bento I, Bojtár M, Palkó R, Szabó P, Monostory K, Pápai I, Soós T, Reményi A. Reversible covalent c-Jun N-terminal kinase inhibitors targeting a specific cysteine by precision-guided Michael-acceptor warheads. Nat Commun 2024; 15:8606. [PMID: 39366946 PMCID: PMC11452492 DOI: 10.1038/s41467-024-52573-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
There has been a surge of interest in covalent inhibitors for protein kinases in recent years. Despite success in oncology, the off-target reactivity of these molecules is still hampering the use of covalent warhead-based strategies. Herein, we disclose the development of precision-guided warheads to mitigate the off-target challenge. These reversible warheads have a complex and cyclic structure with optional chirality center and tailored steric and electronic properties. To validate our proof-of-concept, we modified acrylamide-based covalent inhibitors of c-Jun N-terminal kinases (JNKs). We show that the cyclic warheads have high resilience against off-target thiols. Additionally, the binding affinity, residence time, and even JNK isoform specificity can be fine-tuned by adjusting the substitution pattern or using divergent and orthogonal synthetic elaboration of the warhead. Taken together, the cyclic warheads presented in this study will be a useful tool for medicinal chemists for the deliberate design of safer and functionally fine-tuned covalent inhibitors.
Collapse
Affiliation(s)
- Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Lili Torda
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dóra Földesi-Nagy
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dániel Csókás
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Eszter Szarka
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Ferenc Fekete
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL, Hamburg, Germany
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Roberta Palkó
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Pál Szabó
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Katalin Monostory
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Imre Pápai
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
10
|
Póti ÁL, Bálint D, Alexa A, Sok P, Ozsváth K, Albert K, Turczel G, Magyari S, Ember O, Papp K, Király SB, Imre T, Németh K, Kurtán T, Gógl G, Varga S, Soós T, Reményi A. Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold. Nat Commun 2024; 15:8607. [PMID: 39366929 PMCID: PMC11452651 DOI: 10.1038/s41467-024-52574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
For mitogen-activated protein kinases (MAPKs) a shallow surface-distinct from the substrate binding pocket-called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.
Collapse
Affiliation(s)
- Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kristóf Ozsváth
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sarolt Magyari
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ember
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Papp
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gergő Gógl
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilárd Varga
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Huang Z, Zhang K, Jiang Y, Wang M, Li M, Guo Y, Gao R, Li N, Wang C, Chen J, Wang J, Liu N, Liu X, Liu S, Wei M, Yang C, Yang G. Molecular glue triggers degradation of PHGDH by enhancing the interaction between DDB1 and PHGDH. Acta Pharm Sin B 2024; 14:4001-4013. [PMID: 39309493 PMCID: PMC11413658 DOI: 10.1016/j.apsb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in tumor initiation, proliferation, metastasis, drug resistance, and recurrence. Consequently, targeting CSCs has emerged as a promising avenue for cancer therapy. Recently, 3-phosphoglycerate dehydrogenase (PHGDH) has been identified as being intricately associated with the regulation of numerous cancer stem cells. Yet, reports detailing the functional regulators of PHGDH that can mitigate the stemness across cancer types are limited. In this study, the novel "molecular glue" LXH-3-71 was identified, and it robustly induced degradation of PHGDH, thereby modulating the stemness of colorectal cancer cells (CRCs) both in vitro and in vivo. Remarkably, LXH-3-71 was observed to form a dynamic chimera, between PHGDH and the DDB1-CRL E3 ligase. These insights not only elucidate the anti-CSCs mechanism of the lead compound but also suggest that degradation of PHGDH may be a more viable therapeutic strategy than the development of PHGDH inhibitors. Additionally, compound LXH-3-71 was leveraged as a novel ligand for the DDB1-CRL E3 ligase, facilitating the development of new PROTAC molecules targeting EGFR and CDK4 degradation.
Collapse
Affiliation(s)
- Ziqi Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yurui Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mengmeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mei Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yuda Guo
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ruolin Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ning Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Chenyang Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jia Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
BHUSARE NILAM, KUMAR MAUSHMI. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol Res 2024; 32:849-875. [PMID: 38686058 PMCID: PMC11055995 DOI: 10.32604/or.2024.047042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain tumor, poses significant challenges in terms of treatment success and patient survival. Current treatment modalities for glioblastoma include radiation therapy, surgical intervention, and chemotherapy. Unfortunately, the median survival rate remains dishearteningly low at 12-15 months. One of the major obstacles in treating glioblastoma is the recurrence of tumors, making chemotherapy the primary approach for secondary glioma patients. However, the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms. Consequently, considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs. To tackle glioma, numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEK-ERK-MPAK. By targeting specific signaling pathways, heterocyclic compounds have demonstrated efficacy in glioma therapeutics. Additionally, key kinases including phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase, cytoplasmic tyrosine kinase (CTK), receptor tyrosine kinase (RTK) and lipid kinase (LK) have been considered for investigation. These pathways play crucial roles in drug effectiveness in glioma treatment. Heterocyclic compounds, encompassing pyrimidine, thiazole, quinazoline, imidazole, indole, acridone, triazine, and other derivatives, have shown promising results in targeting these pathways. As part of this review, we propose exploring novel structures with low toxicity and high potency for glioma treatment. The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier. By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics, we can maximize their therapeutic value and minimize adverse effects. Considering the complex nature of glioblastoma, these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
Collapse
Affiliation(s)
- NILAM BHUSARE
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| | - MAUSHMI KUMAR
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| |
Collapse
|
13
|
Tang G, Wang W, Zhu C, Huang H, Chen P, Wang X, Xu M, Sun J, Zhang CJ, Xiao Q, Gao L, Zhang ZM, Yao SQ. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angew Chem Int Ed Engl 2024; 63:e202316394. [PMID: 38248139 DOI: 10.1002/anie.202316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
15
|
Zhao Z, Bourne PE. How Ligands Interact with the Kinase Hinge. ACS Med Chem Lett 2023; 14:1503-1508. [PMID: 37974950 PMCID: PMC10641887 DOI: 10.1021/acsmedchemlett.3c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
ATP-competitive kinase inhibitors form hydrogen bond interactions with the kinase hinge region at the adenine binding site. Thus, it is crucial to explore hinge-ligand recognition as part of a rational drug design strategy. Here, harnessing known ligand-bound kinase structures and experimental assay resources, we first created a kinase structure-assay database (KSAD) containing 2705 nM ligand-bound kinase complexes. Then, using KSAD, we systematically investigate hinge-ligand binding patterns using interaction fingerprints, thereby delineating 15 different hydrogen-bond interaction modes. We believe these results will be valuable for de novo drug design and/or scaffold hopping of kinase-targeted drugs.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E. Bourne
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
17
|
Cirillo D, Diceglie M, Nazaré M. Isoform-selective targeting of PI3K: time to consider new opportunities? Trends Pharmacol Sci 2023; 44:601-621. [PMID: 37438206 DOI: 10.1016/j.tips.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
Phosphoinositide-3-kinases (PI3Ks) are central to several cellular signaling pathways in human physiology and are potential pharmacological targets for many pathologies including cancer, thrombosis, and pulmonary diseases. Tremendous efforts to develop isoform-selective inhibitors have culminated in the approval of several drugs, validating PI3K as a tractable and therapeutically relevant target. Although successful therapeutic validation has focused on isoform-selective class I orthosteric inhibitors, recent clinical findings have indicated challenges regarding poor drug tolerance owing to sustained on-target inhibition. Hence, additional approaches are warranted to increase the clinical benefits of specific clinical treatment options, which may involve the employment of so far underexploited targeting modalities or the development of inhibitors for currently underexplored PI3K class II isoforms. We review recent key discoveries in the development of isoform-selective inhibitors, focusing particularly on PI3K class II isoforms, and highlight the emerging importance of developing a broader arsenal of pharmacological tools.
Collapse
Affiliation(s)
- Davide Cirillo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marta Diceglie
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany.
| |
Collapse
|
18
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
19
|
Zhao Z, Bourne PE. Rigid Scaffolds Are Promising for Designing Macrocyclic Kinase Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1182-1191. [PMID: 37588756 PMCID: PMC10425998 DOI: 10.1021/acsptsci.3c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Macrocyclic kinase inhibitors (MKIs) are gaining attention due to their favorable selectivity and potential to overcome drug resistance, yet they remain challenging to design because of their novel structures. To facilitate the design and discovery of MKIs, we investigate MKI rational design starting from initial acyclic compounds by performing microsecond-scale atomistic simulations for multiple MKIs, constructing an MKI database, and analyzing MKIs using hierarchical cluster analysis. Our studies demonstrate that the binding modes of MKIs are like those of their corresponding acyclic counterparts against the same kinase targets. Importantly, within the respective binding sites, the MKI scaffolds retain the same conformations as their corresponding acyclic counterparts, demonstrating the rigidity of scaffolds before and after molecular cyclization. The MKI database includes 641 nanomole-level MKIs from 56 human kinases elucidating the features of rigid scaffolds and the core structures of MKIs. Collectively these results and resources can facilitate MKI development.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E. Bourne
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
20
|
White MEH, Gil J, Tate EW. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics. Cell Chem Biol 2023; 30:828-838.e4. [PMID: 37451266 DOI: 10.1016/j.chembiol.2023.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Covalent drug discovery has undergone a resurgence over the past two decades and reactive cysteine profiling has emerged in parallel as a platform for ligand discovery through on- and off-target profiling; however, the scope of this approach has not been fully explored at the whole-proteome level. We combined AlphaFold2-predicted side-chain accessibilities for >95% of the human proteome with a meta-analysis of eighteen public cysteine profiling datasets, totaling 44,187 unique cysteine residues, revealing accessibility biases in sampled cysteines primarily dictated by warhead chemistry. Analysis of >3.5 million cysteine-fragment interactions further showed that hit elaboration and optimization drives increased bias against buried cysteine residues. Based on these data, we suggest that current profiling approaches cover a small proportion of potential ligandable cysteine residues and propose future directions for increasing coverage, focusing on high-priority residues and depth. All analysis and produced resources are freely available and extendable to other reactive amino acids.
Collapse
Affiliation(s)
- Matthew E H White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
21
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
22
|
Zhao Z, Bohidar N, Bourne PE. Analysis of KRAS-Ligand Interaction Modes and Flexibilities Reveals the Binding Characteristics. J Chem Inf Model 2023; 63:1362-1370. [PMID: 36780612 DOI: 10.1021/acs.jcim.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
KRAS, a common human oncogene, has been recognized as a critical drug target in treating multiple cancers. After four decades of effort, one allosteric KRAS drug (Sotorasib) has been approved, inspiring more KRAS-targeted drug research. Here, we provide the features of KRAS binding pockets and ligand-binding characteristics of KRAS complexes using a structural systems pharmacology approach. Three distinct binding sites (conserved nucleotide-binding site, shallow Switch-I/II pocket, and allosteric Switch-II/α3 pocket) are characterized. Ligand-binding features are determined based on encoded KRAS-inhibitor interaction fingerprints. Finally, the flexibility of the three distinct binding sites to accommodate different potential ligands, based on MD simulation, is discussed. Collectively, these findings are intended to facilitate rational KRAS drug design.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Niraja Bohidar
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
23
|
Lee SB, Yu J, Kim H, Kim KW, Jeong JW, Kim YL, Park SJ, Koo TS, Lee C, Hong KB, Choi S. Novel Strategy To Inhibit Transthyretin Amyloidosis via the Synergetic Effect of Chemoselective Acylation and Noncovalent Inhibitor Release. J Med Chem 2023; 66:2893-2903. [PMID: 36749109 DOI: 10.1021/acs.jmedchem.2c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Strategies for developing targeted covalent inhibitors (TCIs), which have the advantages of a prolonged duration of action and selectivity toward a drug target, have attracted great interest in drug discovery. Herein, we report chemoselective covalent inhibitors that specifically target lysine ε-amine groups that conjugate with an endogenous protein to prevent disease-causing protein misfolding and aggregation. These TCIs are unique because the benzoyl group is preferentially conjugated to Lys15 at the top of the T4 binding site within transthyretin (TTR) while simultaneously releasing a potent noncovalent TTR kinetic stabilizer. The potency of these covalent inhibitors is superior to tafamidis, the only FDA-approved drug for the treatment of hereditary TTR amyloidosis. In addition to investigations into the covalent modification of TTR via reverse-phase high-performance liquid chromatography, direct methods are performed to confirm and visualize the presumed covalent interaction via mass spectrometry and X-ray crystallography.
Collapse
Affiliation(s)
- Seok Beom Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jaeni Yu
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyunwoo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kun Woo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jong Woo Jeong
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Yun Lan Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ki Bum Hong
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sungwook Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejon 34134, Republic of Korea
| |
Collapse
|
24
|
Ngo C, Ekanayake A, Zhang C. Identification of Covalent Ligands – from Single Targets to Whole Proteome. Isr J Chem 2023. [DOI: 10.1002/ijch.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chau Ngo
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
| | - Arunika Ekanayake
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
- Current address: Department of Chemistry University of Alberta T6G 2G2 Edmonton AB Canada
| | - Chao Zhang
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
| |
Collapse
|
25
|
Battisti UM, Gao C, Nilsson O, Akladios F, Lulla A, Bogucka A, Nain-Perez A, Håversen L, Kim W, Boren J, Hyvönen M, Uhlen M, Mardinoglu A, Grøtli M. Serendipitous Identification of a Covalent Activator of Liver Pyruvate Kinase. Chembiochem 2023; 24:e202200339. [PMID: 36250581 PMCID: PMC10099687 DOI: 10.1002/cbic.202200339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/14/2022] [Indexed: 01/05/2023]
Abstract
Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC50 =0.29 μM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators.
Collapse
Affiliation(s)
- Umberto Maria Battisti
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Oscar Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Fady Akladios
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Agnieszka Bogucka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Amalyn Nain-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 21, Stockholm, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 21, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 21, Stockholm, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| |
Collapse
|
26
|
Sousa B, de Almeida CR, Barahona AF, Lopes R, Martins-Logrado A, Cavaco M, Neves V, Carvalho LA, Labão-Almeida C, Coelho AR, Leal Bento M, Lopes RMR, Oliveira BL, Castanho MARB, Neumeister P, Deutsch A, Vladimer GI, Krall N, João C, Corzana F, Seixas JD, Fior R, Bernardes GJL. Selective Inhibition of Bruton's Tyrosine Kinase by a Designed Covalent Ligand Leads to Potent Therapeutic Efficacy in Blood Cancers Relative to Clinically Used Inhibitors. ACS Pharmacol Transl Sci 2022; 5:1156-1168. [PMID: 36407952 PMCID: PMC9667546 DOI: 10.1021/acsptsci.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.
Collapse
Affiliation(s)
- Bárbara
B. Sousa
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | | | - Ana F. Barahona
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Raquel Lopes
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | | | - Marco Cavaco
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Vera Neves
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Luís A.
R. Carvalho
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Carlos Labão-Almeida
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marta Leal Bento
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Centro
Hospitalar Lisboa Norte, Department of Hematology and Bone Marrow
Transplantation, Avenida
Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - Ricardo M. R.
M. Lopes
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Bruno L. Oliveira
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Peter Neumeister
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Alexander Deutsch
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Gregory I. Vladimer
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Nikolaus Krall
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Cristina João
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Francisco Corzana
- Centro
de Investigación en Síntesis Química, Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - João D. Seixas
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- TARGTEX
S.A., Avenida Tenente
Valadim, N°17, 2F, 2560-275 Torres Vedras, Portugal
| | - Rita Fior
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
27
|
Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022; 27:molecules27227728. [PMID: 36431829 PMCID: PMC9694382 DOI: 10.3390/molecules27227728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.
Collapse
|
28
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
29
|
Bon M, Bilsland A, Bower J, McAulay K. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol Oncol 2022; 16:3761-3777. [PMID: 35749608 PMCID: PMC9627785 DOI: 10.1002/1878-0261.13277] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is now established as a complementary approach to high-throughput screening (HTS). Contrary to HTS, where large libraries of drug-like molecules are screened, FBDD screens involve smaller and less complex molecules which, despite a low affinity to protein targets, display more 'atom-efficient' binding interactions than larger molecules. Fragment hits can, therefore, serve as a more efficient start point for subsequent optimisation, particularly for hard-to-drug targets. Since the number of possible molecules increases exponentially with molecular size, small fragment libraries allow for a proportionately greater coverage of their respective 'chemical space' compared with larger HTS libraries comprising larger molecules. However, good library design is essential to ensure optimal chemical and pharmacophore diversity, molecular complexity, and physicochemical characteristics. In this review, we describe our views on fragment library design, and on what constitutes a good fragment from a medicinal and computational chemistry perspective. We highlight emerging chemical and computational technologies in FBDD and discuss strategies for optimising fragment hits. The impact of novel FBDD approaches is already being felt, with the recent approval of the covalent KRASG12C inhibitor sotorasib highlighting the utility of FBDD against targets that were long considered undruggable.
Collapse
Affiliation(s)
- Marta Bon
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Alan Bilsland
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Justin Bower
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Kirsten McAulay
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| |
Collapse
|
30
|
Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15111322. [PMID: 36355497 PMCID: PMC9695834 DOI: 10.3390/ph15111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Kinase-targeted drug discovery for cancer therapy has advanced significantly in the last three decades. Currently, diverse kinase inhibitors or degraders have been reported, such as allosteric inhibitors, covalent inhibitors, macrocyclic inhibitors, and PROTAC degraders. Out of these, covalent kinase inhibitors (CKIs) have been attracting attention due to their enhanced selectivity and exceptionally strong affinity. Eight covalent kinase drugs have been FDA-approved thus far. Here, we review current developments in CKIs. We explore the characteristics of the CKIs: the features of nucleophilic amino acids and the preferences of electrophilic warheads. We provide systematic insights into privileged warheads for repurposing to other kinase targets. Finally, we discuss trends in CKI development across the whole proteome.
Collapse
|
31
|
Zhao Z, Bourne PE. Harnessing systematic protein-ligand interaction fingerprints for drug discovery. Drug Discov Today 2022; 27:103319. [PMID: 35850431 DOI: 10.1016/j.drudis.2022.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
Determining protein-ligand interaction characteristics and mechanisms is crucial to the drug discovery process. Here, we review recent progress and successful applications of a systematic protein-ligand interaction fingerprint (IFP) approach for investigating proteome-wide protein-ligand interactions for drug development. Specifically, we review the use of this IFP approach for revealing polypharmacology across the kinome, predicting promising targets from which to design allosteric inhibitors and covalent kinase inhibitors, uncovering the binding mechanisms of drugs of interest, and demonstrating resistant mechanisms of specific drugs. Together, we demonstrate that the IFP strategy is efficient and practical for drug design research for protein kinases as targets and is extensible to other protein families.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | - Philip E Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
32
|
Arter C, Trask L, Ward S, Yeoh S, Bayliss R. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. J Biol Chem 2022; 298:102247. [PMID: 35830914 PMCID: PMC9382423 DOI: 10.1016/j.jbc.2022.102247] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are key components in cellular signaling pathways as they carry out the phosphorylation of proteins, primarily on Ser, Thr, and Tyr residues. The catalytic activity of protein kinases is regulated, and they can be thought of as molecular switches that are controlled through protein-protein interactions and post-translational modifications. Protein kinases exhibit diverse structural mechanisms of regulation and have been fascinating subjects for structural biologists from the first crystal structure of a protein kinase over 30 years ago, to recent insights into kinase assemblies enabled by the breakthroughs in cryo-EM. Protein kinases are high-priority targets for drug discovery in oncology and other disease settings, and kinase inhibitors have transformed the outcomes of specific groups of patients. Most kinase inhibitors are ATP competitive, deriving potency by occupying the deep hydrophobic pocket at the heart of the kinase domain. Selectivity of inhibitors depends on exploiting differences between the amino acids that line the ATP site and exploring the surrounding pockets that are present in inactive states of the kinase. More recently, allosteric pockets outside the ATP site are being targeted to achieve high selectivity and to overcome resistance to current therapeutics. Here, we review the key regulatory features of the protein kinase family, describe the different types of kinase inhibitors, and highlight examples where the understanding of kinase regulatory mechanisms has gone hand in hand with the development of inhibitors.
Collapse
Affiliation(s)
- Chris Arter
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Luke Trask
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah Ward
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
33
|
Du H, Jiang D, Gao J, Zhang X, Jiang L, Zeng Y, Wu Z, Shen C, Xu L, Cao D, Hou T, Pan P. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network. Research (Wash D C) 2022; 2022:9873564. [PMID: 35958111 PMCID: PMC9343084 DOI: 10.34133/2022/9873564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022] Open
Abstract
Covalent ligands have attracted increasing attention due to their unique advantages, such as long residence time, high selectivity, and strong binding affinity. They also show promise for targets where previous efforts to identify noncovalent small molecule inhibitors have failed. However, our limited knowledge of covalent binding sites has hindered the discovery of novel ligands. Therefore, developing in silico methods to identify covalent binding sites is highly desirable. Here, we propose DeepCoSI, the first structure-based deep graph learning model to identify ligandable covalent sites in the protein. By integrating the characterization of the binding pocket and the interactions between each cysteine and the surrounding environment, DeepCoSI achieves state-of-the-art predictive performances. The validation on two external test sets which mimic the real application scenarios shows that DeepCoSI has strong ability to distinguish ligandable sites from the others. Finally, we profiled the entire set of protein structures in the RCSB Protein Data Bank (PDB) with DeepCoSI to evaluate the ligandability of each cysteine for covalent ligand design, and made the predicted data publicly available on website.
Collapse
Affiliation(s)
- Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Junbo Gao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Lingxiao Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004 Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
34
|
Rezende Miranda R, Zhang C. Reactivity-based chemical-genetic study of protein kinases. RSC Med Chem 2022; 13:783-797. [PMID: 35923719 PMCID: PMC9298188 DOI: 10.1039/d1md00389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The human protein kinase superfamily comprises over 500 members that operate in nearly every signal transduction pathway and regulate essential cellular processes. Deciphering the functional roles of protein kinases with small-molecule inhibitors is essential to enhance our understanding of cell signaling and to facilitate the development of new therapies. However, it is rather challenging to identify selective kinase inhibitors because of the conserved nature of the ATP binding site. A number of chemical-genetic approaches have been developed during the past two decades to enable selective chemical perturbation of the activity of individual kinases. Herein, we review the development and application of chemical-genetic strategies that feature the use of covalent inhibitors targeting cysteine residues to dissect the cellular functions of protein kinases.
Collapse
Affiliation(s)
- Renata Rezende Miranda
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester New York 14623 USA
| | - Chao Zhang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- USC Norris Comprehensive Cancer Center, University of Southern California Los Angeles California 90089 USA
| |
Collapse
|
35
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang CJ, Zhang ZM, Gao L, Yao SQ. Cell-Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR-ABL Kinase. Angew Chem Int Ed Engl 2022; 61:e202203878. [PMID: 35438229 DOI: 10.1002/anie.202203878] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
36
|
Hall A, Abendroth J, Bolejack MJ, Ceska T, Dell’Aiera S, Ellis V, Fox D, François C, Muruthi MM, Prével C, Poullennec K, Romanov S, Valade A, Vanbellinghen A, Yano J, Geraerts M. Discovery and Characterization of a Novel Series of Chloropyrimidines as Covalent Inhibitors of the Kinase MSK1. ACS Med Chem Lett 2022; 13:1099-1108. [PMID: 35859861 PMCID: PMC9290008 DOI: 10.1021/acsmedchemlett.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
We describe the identification and
characterization of a series
of covalent inhibitors of the C-terminal kinase domain (CTKD) of MSK1.
The initial hit was identified via a high-throughput screening and
represents a rare example of a covalent inhibitor which acts via an
SNAr reaction of a 2,5-dichloropyrimidine with a
cysteine residue (Cys440). The covalent mechanism of action was supported
by in vitro biochemical experiments and was confirmed
by mass spectrometry. Ultimately, the displacement of the 2-chloro
moiety was confirmed by crystallization of an inhibitor with the CTKD.
We also disclose the crystal structures of three compounds from this
series bound to the CTKD of MSK1, in addition to the crystal structures
of two unrelated RSK2 covalent inhibitors bound to the CTKD of MSK1.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | - Jan Abendroth
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Madison J. Bolejack
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Tom Ceska
- UCB, 216 Bath Road, Slough SL1 3WE, U.K
| | | | | | - David Fox
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Cyril François
- NovAliX, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | - Muigai M. Muruthi
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Camille Prével
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | | | - Sergei Romanov
- NANOSYN, 3100 Central Expressway, Santa Clara, California 95051, United States
| | - Anne Valade
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | | | - Jason Yano
- UCB Boston, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | |
Collapse
|
37
|
Atz K, Isert C, Böcker MNA, Jiménez-Luna J, Schneider G. Δ-Quantum machine-learning for medicinal chemistry. Phys Chem Chem Phys 2022; 24:10775-10783. [PMID: 35470831 PMCID: PMC9093086 DOI: 10.1039/d2cp00834c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like molecules currently renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we developed DelFTa, an open-source toolbox for the prediction of electronic properties of drug-like molecules at the density functional (DFT) level of theory, using Δ-machine-learning. Δ-Learning corrects the prediction error (Δ) of a fast but inaccurate property calculation. DelFTa employs state-of-the-art three-dimensional message-passing neural networks trained on a large dataset of QM properties. It provides access to a wide array of quantum observables on the molecular, atomic and bond levels by predicting approximations to DFT values from a low-cost semiempirical baseline. Δ-Learning outperformed its direct-learning counterpart for most of the considered QM endpoints. The results suggest that predictions for non-covalent intra- and intermolecular interactions can be extrapolated to larger biomolecular systems. The software is fully open-sourced and features documented command-line and Python APIs.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Markus N A Böcker
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - José Jiménez-Luna
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- ETH Singapore SEC Ltd., 1 CREATE Way, #06-01 CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
38
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang C, Zhang Z, Gao L, Yao SQ. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chengjun Zhu
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Guanghui Tang
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chong‐Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Zhi‐Min Zhang
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
39
|
Borsari C, Keles E, McPhail JA, Schaefer A, Sriramaratnam R, Goch W, Schaefer T, De Pascale M, Bal W, Gstaiger M, Burke JE, Wymann MP. Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. J Am Chem Soc 2022; 144:6326-6342. [PMID: 35353516 PMCID: PMC9011356 DOI: 10.1021/jacs.1c13568] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Covalent protein
kinase inhibitors exploit currently noncatalytic
cysteines in the adenosine 5′-triphosphate (ATP)-binding site
via electrophiles directly appended to a reversible-inhibitor scaffold.
Here, we delineate a path to target solvent-exposed cysteines at a
distance >10 Å from an ATP-site-directed core module and produce
potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors.
First, reactive warheads are used to reach out to Cys862 on PI3Kα,
and second, enones are replaced with druglike warheads while linkers
are optimized. The systematic investigation of intrinsic warhead reactivity
(kchem), rate of covalent bond formation
and proximity (kinact and reaction space
volume Vr), and integration of structure
data, kinetic and structural modeling, led to the guided identification
of high-quality, covalent chemical probes. A novel stochastic approach
provided direct access to the calculation of overall reaction rates
as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker
lengths. X-ray crystallography, protein mass spectrometry (MS), and
NanoBRET assays confirmed covalent bond formation of the acrylamide
warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351,
the only known PI3Kα irreversible inhibitor. Washout experiments
in cancer cell lines with mutated, constitutively activated PI3Kα
showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kβ-dependent signaling,
which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective
signaling branches. The proposed approach is generally suited to develop
covalent tools targeting distal, unexplored Cys residues in biologically
active enzymes.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexander Schaefer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Goch
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
40
|
Shao M, Chen X, Yang F, Song X, Zhou Y, Lin Q, Fu Y, Ortega R, Lin X, Tu Z, Patterson AV, Smaill JB, Chen Y, Lu X. Design, Synthesis, and Biological Evaluation of Aminoindazole Derivatives as Highly Selective Covalent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR4. J Med Chem 2022; 65:5113-5133. [PMID: 35271262 DOI: 10.1021/acs.jmedchem.2c00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aberrant FGF19/FGFR4 signaling has been shown to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC) with several pan-FGFR inhibitors and FGFR4-selective inhibitors currently being evaluated in the clinic. However, FGFR4 gatekeeper mutation induced acquired resistance remains an unmet clinical challenge for HCC treatment. Thus, a series of aminoindazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. One representative compound (7v) exhibited excellent potency against FGFR4, FGFR4V550L, and FGFR4V550M with nanomolar activity in both the biochemical and cellular assays while sparing FGFR1/2/3. While compound 7v demonstrated modest in vivo antitumor efficacy in nude mice bearing the Huh-7 xenograft model consistent with its unfavorable pharmacokinetic properties, it provides a promising new starting point for future drug discovery combating FGFR4 gatekeeper mediated resistance in HCC patients.
Collapse
Affiliation(s)
- Min Shao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Song
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Raquel Ortega
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 92019, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 92019, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
41
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
42
|
Islam MS, Junod SL, Zhang S, Buuh ZY, Guan Y, Zhao M, Kaneria KH, Kafley P, Cohen C, Maloney R, Lyu Z, Voelz VA, Yang W, Wang RE. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nat Commun 2022; 13:350. [PMID: 35039490 PMCID: PMC8763920 DOI: 10.1038/s41467-022-27995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a facile peptide macrocyclization and stapling strategy based on a fluorine thiol displacement reaction (FTDR), which renders a class of peptide analogues with enhanced stability, affinity, cellular uptake, and inhibition of cancer cells. This approach enabled selective modification of the orthogonal fluoroacetamide side chains in unprotected peptides in the presence of intrinsic cysteines. The identified benzenedimethanethiol linker greatly promoted the alpha helicity of a variety of peptide substrates, as corroborated by molecular dynamics simulations. The cellular uptake of benzenedimethanethiol stapled peptides appeared to be universally enhanced compared to the classic ring-closing metathesis (RCM) stapled peptides. Pilot mechanism studies suggested that the uptake of FTDR-stapled peptides may involve multiple endocytosis pathways in a distinct pattern in comparison to peptides stapled by RCM. Consistent with the improved cell permeability, the FTDR-stapled lead Axin and p53 peptide analogues demonstrated enhanced inhibition of cancer cells over the RCM-stapled analogues and the unstapled peptides. Strategies capable of stapling unprotected peptides in a straightforward, chemoselective, and clean manner, as well as promoting cellular uptake are of great interest. Here the authors report a peptide macrocyclization and stapling strategy which satisfies those criteria, based on a fluorine thiol displacement reaction.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yifu Guan
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Kishan H Kaneria
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Carson Cohen
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
43
|
Lu X, Smaill JB, Patterson AV, Ding K. Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors. J Med Chem 2021; 65:58-83. [PMID: 34962782 DOI: 10.1021/acs.jmedchem.1c01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small molecule covalent kinase inhibitors (CKIs) have entered a new era in drug discovery, which have the advantage for sustained target inhibition and high selectivity. An increased understanding of binding kinetics of CKIs and discovery of additional irreversible and reversible-covalent cysteine-targeted warheads has inspired the development of this area. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative CKIs, which are categorized by the location of the target cysteine within seven main regions of the kinase: the front region, the glycine rich loop (P-loop), the hinge region, the DFG region, the activation loop (A-loop), the catalytic loop (C-loop), and the remote loop. The emphasis is placed on the design and optimization strategies of CKIs that are generated by addition of a warhead to a reversible lead/inhibitor scaffold. In addition, we address the challenges facing this area of drug discovery.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
44
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
45
|
Zhang P, Min Z, Gao Y, Bian J, Lin X, He J, Ye D, Li Y, Peng C, Cheng Y, Chu Y. Discovery of Novel Benzothiazepinones as Irreversible Covalent Glycogen Synthase Kinase 3β Inhibitors for the Treatment of Acute Promyelocytic Leukemia. J Med Chem 2021; 64:7341-7358. [PMID: 34027661 DOI: 10.1021/acs.jmedchem.0c02254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, irreversible inhibitors have attracted great interest in antitumors due to their advantages of forming covalent bonds to target proteins. Herein, some benzothiazepinone compounds (BTZs) have been designed and synthesized as novel covalent GSK-3β inhibitors with high selectivity for the kinase panel. The irreversible covalent binding mode was identified by kinetics and mass spectrometry, and the main labeled residue was confirmed to be the unique Cys14 that exists only in GSK-3β. The candidate 4-3 (IC50 = 6.6 μM) showed good proliferation inhibition and apoptosis-inducing ability to leukemia cell lines, low cytotoxicity on normal cell lines, and no hERG inhibition, which hinted the potential efficacy and safety. Furthermore, 4-3 exhibited decent pharmacokinetic properties in vivo and remarkably inhibited tumor growth in the acute promyelocytic leukemia (APL) mouse model. All the results suggest that these newly irreversible BTZ compounds might be useful in the treatment of cancer such as APL.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Lab of New Drug & Pharmaceutical Process, Shanghai Key Lab of Anti-Infectives, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Yunfeng Cheng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
46
|
Costa AM, Bosch L, Petit E, Vilarrasa J. Computational Study of the Addition of Methanethiol to 40+ Michael Acceptors as a Model for the Bioconjugation of Cysteines. J Org Chem 2021; 86:7107-7118. [PMID: 33914532 PMCID: PMC8631706 DOI: 10.1021/acs.joc.1c00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/17/2022]
Abstract
A long series of Michael acceptors are studied computationally as potential alternatives to the maleimides that are used in most antibody-drug conjugates to link Cys of mAbs with cytotoxic drugs. The products of the reaction of methanethiol (CH3SH/MeSH, as a simple model of Cys) with N-methylated ethynesulfonamide, 2-ethynylpyridinium ion, propynamide, and methyl ethynephosphonamidate (that is, with HC≡C-EWG) are predicted by the M06-2X/6-311+G(d,p) method to be thermodynamically more stable, in relation to their precursors, than that of MeSH with N-methylmaleimide and, in general, with H2C═CH-EWG; calculations with AcCysOMe and tBuSH are also included. However, for the addition of the anion (MeS-), which is the reactive species, the order changes and N-methylated 2-vinylpyridinium ion, 2,3-butadienamide, and maleimide may give more easily the anionic adducts than several activated triple bonds; moreover, the calculated ΔG⧧ values increase following the order HC≡C-SO2NHMe, N-methylmaleimide, HC≡C-PO(OMe)NHMe, and HC≡C-CONHMe. In other words, MeS- is predicted to react more rapidly with maleimides than with ethynephosphonamidates and with propynamides, in agreement with the experimental results. New mechanistic details are disclosed regarding the advantageous use of some amides, especially of ethynesulfonamides, which, however, are more prone to double additions and exchange reactions.
Collapse
Affiliation(s)
- Anna M. Costa
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Lluís Bosch
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Elena Petit
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Jaume Vilarrasa
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
47
|
Toviwek B, Gleeson D, Gleeson MP. QM/MM and molecular dynamics investigation of the mechanism of covalent inhibition of TAK1 kinase. Org Biomol Chem 2021; 19:1412-1425. [PMID: 33501482 DOI: 10.1039/d0ob02273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
48
|
Du H, Gao J, Weng G, Ding J, Chai X, Pang J, Kang Y, Li D, Cao D, Hou T. CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors. Nucleic Acids Res 2021; 49:D1122-D1129. [PMID: 33068433 PMCID: PMC7778999 DOI: 10.1093/nar/gkaa876] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibitors that form covalent bonds with their targets have traditionally been considered highly adventurous due to their potential off-target effects and toxicity concerns. However, with the clinical validation and approval of many covalent inhibitors during the past decade, design and discovery of novel covalent inhibitors have attracted increasing attention. A large amount of scattered experimental data for covalent inhibitors have been reported, but a resource by integrating the experimental information for covalent inhibitor discovery is still lacking. In this study, we presented Covalent Inhibitor Database (CovalentInDB), the largest online database that provides the structural information and experimental data for covalent inhibitors. CovalentInDB contains 4511 covalent inhibitors (including 68 approved drugs) with 57 different reactive warheads for 280 protein targets. The crystal structures of some of the proteins bound with a covalent inhibitor are provided to visualize the protein–ligand interactions around the binding site. Each covalent inhibitor is annotated with the structure, warhead, experimental bioactivity, physicochemical properties, etc. Moreover, CovalentInDB provides the covalent reaction mechanism and the corresponding experimental verification methods for each inhibitor towards its target. High-quality datasets are downloadable for users to evaluate and develop computational methods for covalent drug design. CovalentInDB is freely accessible at http://cadd.zju.edu.cn/cidb/.
Collapse
Affiliation(s)
- Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Junbo Gao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Gaoqi Weng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Junjie Ding
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
49
|
Modeling Covalent Protein-Ligand Interactions. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|