1
|
El Fadili M, Er-Rajy M, Mujwar S, Ajala A, Bouzammit R, Kara M, Abuelizz HA, Er-Rahmani S, Elhallaoui M. In silico insights into the design of novel NR2B-selective NMDA receptor antagonists: QSAR modeling, ADME-toxicity predictions, molecular docking, and molecular dynamics investigations. BMC Chem 2024; 18:142. [PMID: 39085870 PMCID: PMC11293250 DOI: 10.1186/s13065-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Based on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique with the leave-one-out procedure (CVLOO) with Q2cv of 0.785, more than Y-randomization test, and applicability domain (AD), in addition to Fisher's and Student's statistical tests. Thereafter, ten novel molecules were designed based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex with the targeted protein of NMDA receptor (5EWJ.pdb).
Collapse
Affiliation(s)
- Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Abduljelil Ajala
- Department of chemistry, Faculty of physical sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorization of Naturals Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara Er-Rahmani
- Dipartimento di Chimica, Università di Torino, Torino, 10125, Italy
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
2
|
Ejjoummany A, Elie J, El Hakmaoui A, Akssira M, Routier S, Buron F. Access and Modulation of Substituted Pyrrolo[3,4- c]pyrazole-4,6-(2 H,5 H)-diones. Molecules 2023; 28:5811. [PMID: 37570778 PMCID: PMC10421423 DOI: 10.3390/molecules28155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The first access to polyfunctionnalized pyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-dione derivatives is reported. The series were generated from diethyl acetylenedicarboxylate and arylhydrazines, which afforded the key intermediates bearing two functional positions. The annellation to generate the maleimide moiety of the bicycle was studied. Moreover, an efficient palladium-catalyzed C-C and C-N bond formation via Suzuki-Miyaura or Buchwald-Hartwig coupling reactions in C-6 position was investigated from 6-chloropyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-diones. This method provides novel access to various 1,6 di-substituted pyrrolo[3,4-c] pyrazole-4,6-(2H,5H)-diones.
Collapse
Affiliation(s)
- Abdelaziz Ejjoummany
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Jonathan Elie
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| | - Ahmed El Hakmaoui
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Mohamed Akssira
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| |
Collapse
|
3
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
4
|
El fadili M, Er-rajy M, Imtara H, Noman OM, Mothana RA, Abdullah S, Zerougui S, Elhallaoui M. QSAR, ADME-Tox, molecular docking and molecular dynamics simulations of novel selective glycine transporter type 1 inhibitors with memory enhancing properties. Heliyon 2023; 9:e13706. [PMID: 36865465 PMCID: PMC9971180 DOI: 10.1016/j.heliyon.2023.e13706] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
A structural class of forty glycine transporter type 1 (GlyT1) inhibitors, was examined using molecular modeling techniques. The quantitative structure-activity relationships (QSAR) technology confirmed that human GlyT1 activity is strongly and significantly affected by constitutional, geometrical, physicochemical and topological descriptors. ADME-Tox in-silico pharmacokinetics revealed that L28 and L30 ligands were predicted as non-toxic inhibitors with a good ADME profile and the highest probability to penetrate the central nervous system (CNS). Molecular docking results indicated that the predicted inhibitors block GlyT1, reacting specifically with Phe319, Phe325, Tyr123, Tyr 124, Arg52, Asp475, Ala117, Ala479, Ile116 and Ile483 amino acids of the dopamine transporter (DAT) membrane protein. These results were qualified and strengthened using molecular dynamics (MD) study, which affirmed that the established intermolecular interactions for (L28, L30-DAT protein) complexes remain perfectly stable along 50 ns of MD simulation time. Therefore, they could be strongly recommended as therapeutics in medicine to improve memory performance.
Collapse
Affiliation(s)
- Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, Jenin BP Box 240, Palestine
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheaf Abdullah
- Department of Hand Surgery and Microsurgery, University Medicine Greifswald, Greifswald, Germany
| | - Sara Zerougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco
| |
Collapse
|
5
|
Meanwell NA, Loiseleur O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10972-11004. [PMID: 35675052 DOI: 10.1021/acs.jafc.2c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of piperazine and homopiperazine in drug design are well-established, and these heterocycles have found use as both scaffolding and terminal elements and also as a means of introducing a water-solubilizing element into a molecule. In the accompanying review (10.1021/acs.jafc.2c00726), we summarized applications of piperazine and homopiperazine and their fused ring homologues in bioactive compound design along with illustrations of the use of 4-substituted piperidines and a sulfoximine-based mimetic. In this review, we discuss applications of pyrrolidine- and fused-pyrrolidine-based mimetics of piperazine and homopiperazine and illustrate derivatives of azetidine that include stretched and spirocyclic motifs, along with applications of a series of diaminocycloalkanes.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Post Office Box 4000, Princeton, New Jersey 08543, United States
| | - Olivier Loiseleur
- Syngenta Crop Protection Research, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| |
Collapse
|
6
|
Carlson AS, Petre AM, Topczewski JJ. A cascade reaction of cinnamyl azides with vinyl sulfones directly generates dihydro-pyrrolo-pyrazole heterocycles. Tetrahedron Lett 2021; 67. [PMID: 34054152 DOI: 10.1016/j.tetlet.2021.152860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report describes the direct synthesis of dihydro-pyrrolo-pyrazole heterocycles from allylic azides and methyl vinyl sulfone. The product results from a complex cascade reaction that is operationally straightforward, with aromatization being the result of a concomitant elimination step. A variety of azides could participate in this reaction (12 examples) and the isolated yields of the desired product ranged from 51%-72%. Lastly the ethylene sulfone group could be removed by heating the product in pyrrolidine.
Collapse
Affiliation(s)
- Angela S Carlson
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Paes D, Xie K, Wheeler DG, Zook D, Prickaerts J, Peters M. Inhibition of PDE2 and PDE4 synergistically improves memory consolidation processes. Neuropharmacology 2021; 184:108414. [PMID: 33249120 DOI: 10.1016/j.neuropharm.2020.108414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.
Collapse
Affiliation(s)
- Dean Paes
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Keqiang Xie
- In Vitro Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Damian G Wheeler
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Douglas Zook
- DMPK, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Jos Prickaerts
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Marco Peters
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA; Neurobiology and Behavior & Center for the Neurobiology of Learning and Memory, University of California Irvine, 213 Qureshey Research Lab, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Pharmacological inhibition of phosphodiesterase 7 enhances consolidation processes of spatial memory. Neurobiol Learn Mem 2020; 177:107357. [PMID: 33278592 DOI: 10.1016/j.nlm.2020.107357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Augmentation of cAMP signaling through inhibition of phosphodiesterases (PDE) is known to enhance plasticity and memory. Inhibition of PDE4 enhances consolidation into memory, but less is known about the role of other cAMP specific PDEs. Here, we tested the effects of oral treatment with a selective inhibitor of PDE7 of nanomolar potency on spatial and contextual memory. In an object location task, doses of 0.3-3 mg/kg administered 3 h after training dose-dependently attenuated time-dependent forgetting in rats. Significant enhancement of memory occurred at a dose of 3 mg/kg with corresponding brain levels consistent with PDE7 inhibition. The same dose given prior to training augmented contextual fear conditioning. In mice, daily dosing before training enhanced spatial memory in two different incremental learning paradigms in the Barnes Maze. Drug treated mice made significantly less errors locating the escape in a probe-test 24 h after the end of training, and they exhibited hippocampal-dependent spatial search strategies more frequently than controls, which tended to show serial sampling of escape locations. Acquisition and short-term memory, in contrast, were unaffected. Our data provide evidence for a role of PDE7 in the consolidation of hippocampal-dependent memory. We suggest that targeting PDE7 for memory enhancement may provide an alternative to PDE4 inhibitors, which tend to have undesirable gastrointestinal side-effects.
Collapse
|
9
|
Hudson AR, Santora VJ, Petroski RE, Almos TA, Anderson G, Barido R, Basinger J, Bellows CL, Bookser BC, Broadbent NJ, Cabebe C, Chai CK, Chen M, Chow S, Chung DM, Heger L, Danks AM, Freestone GC, Gitnick D, Gupta V, Hoffmaster C, Kaplan AP, Kennedy MR, Lee D, Limberis J, Ly K, Mak CC, Masatsugu B, Morse AC, Na J, Neul D, Nikpur J, Renick J, Sebring K, Sevidal S, Tabatabaei A, Wen J, Xia S, Yan Y, Yoder ZW, Zook D, Peters M, Breitenbucher JG. Azetidine-based selective glycine transporter-1 (GlyT1) inhibitors with memory enhancing properties. Bioorg Med Chem Lett 2020; 30:127214. [PMID: 32527538 DOI: 10.1016/j.bmcl.2020.127214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
A strategy to conformationally restrain a series of GlyT1 inhibitors identified potent analogs that exhibited slowly interconverting rotational isomers. Further studies to address this concern led to a series of azetidine-based inhibitors. Compound 26 was able to elevate CSF glycine levels in vivo and demonstrated potency comparable to Bitopertin in an in vivo rat receptor occupancy study. Compound 26 was subsequently shown to enhance memory in a Novel Object Recognition (NOR) behavioral study after a single dose of 0.03 mg/kg, and in a contextual fear conditioning (cFC) study after four QD doses of 0.01-0.03 mg/kg.
Collapse
Affiliation(s)
- Andrew R Hudson
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States.
| | - Vincent J Santora
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Robert E Petroski
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Theresa A Almos
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Gary Anderson
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Richard Barido
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Jillian Basinger
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Chris L Bellows
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Brett C Bookser
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Nicola J Broadbent
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Clifford Cabebe
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Chih-Kun Chai
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Mi Chen
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Stephine Chow
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - De Michael Chung
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Lindsay Heger
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Anne M Danks
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Graeme C Freestone
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Dany Gitnick
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Varsha Gupta
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | | | - Alan P Kaplan
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Michael R Kennedy
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Dong Lee
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - James Limberis
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Kiev Ly
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Chi Ching Mak
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Brittany Masatsugu
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Andrew C Morse
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Jim Na
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - David Neul
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - John Nikpur
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Joel Renick
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Kristen Sebring
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Samantha Sevidal
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Ali Tabatabaei
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Jenny Wen
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Shouzhen Xia
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Yingzhuo Yan
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Zachary W Yoder
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Douglas Zook
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - Marco Peters
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| | - J Guy Breitenbucher
- Dart Neuroscience, 12278 Scripps Summit Dr, San Diego, CA 92131, United States
| |
Collapse
|
10
|
Zhu JN, Wang WK, Jin ZH, Wang QK, Zhao SY. Pyrrolo[3,4- c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Org Lett 2019; 21:5046-5050. [PMID: 31247786 DOI: 10.1021/acs.orglett.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of pyrrolo[3,4- c]pyrazole derivatives from readily available aldehyde hydrazones and maleimides via direct oxidative coupling under radical cascade reaction have been reported. This method offers satisfactory chemical yields and good functional group compatibility. Moreover, this practical approach is catalyzed by CuCl utilizing air as the oxidant and some control experiments were performed to elaborate the mechanism.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Ze-Hui Jin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Qian-Kun Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
11
|
MS binding assays for GlyT1 based on Org24598 as nonlabelled reporter ligand. Neuropharmacology 2019; 161:107561. [PMID: 30851306 DOI: 10.1016/j.neuropharm.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022]
Abstract
In this study an alternative to radioligand binding assays addressing the glycine transporter 1 (GlyT1) based on quantification of a nonlabelled reporter ligand by means of mass spectrometry (MS) is presented. The established MS Binding Assays employ the GlyT1 inhibitor Org24598 as reporter ligand for which a highly sensitive LC-ESI-MS/MS (liquid chromatography electrospray ionization tandem mass spectrometry) method was developed. A validation of this LC-ESI-MS/MS method with respect to selectivity, linearity, accuracy and precision according to the FDA guidance demonstrated its reliability for quantification of Org24598 in binding experiments. For the implementation of GlyT1 binding experiments conditions in accordance to known GlyT1 radioligand binding assays and already known filtration based MS Binding Assays were chosen. In saturation experiments the affinity of Org24598 towards GlyT1 could be characterized with an equilibrium dissociation constant (Kd) of 16.8 ± 2.2 nM that is well in agreement with the affinity determined in radioligand binding assays. Finally, several known GlyT ligands were studied in competition experiments and the determined inhibition constants (Ki) compared with results from radioligand binding and uptake assays. The almost perfect correlation of the affinities obtained in the MS based binding experiments with results from literature clearly indicates that the established GlyT1 MS Binding Assays are a powerful substitute for the GlyT1 radioligand binding assays so far used for affinity profiling and screening. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
12
|
Cao X, Zhang Y, Chen Y, Qiu Y, Yu M, Xu X, Liu X, Liu BF, Zhang L, Zhang G. Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives As Potential Multireceptor Atypical Antipsychotics. J Med Chem 2018; 61:10017-10039. [PMID: 30383372 DOI: 10.1021/acs.jmedchem.8b01096] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, a novel series of multireceptor ligands was developed as polypharmacological antipsychotic agents using the designed multiple ligand approach between dopamine receptors and serotonin receptors. Among them, compound 47 possessed unique pharmacological features, exhibiting high affinities for D2, D3, 5-HT1A, 5-HT2A, and 5-HT6 receptors and low efficacy at the off-target receptors (5-HT2C, histamine H1, and adrenergic α1 receptor). Compound 47 showed dose-dependent inhibition of apomorphine- and MK-801-induced motor behavior, and the conditioned avoidance response with low cataleptic effect. Moreover, compound 47 resulted nonsignificantly serum prolactin levels and weight gain change compared with risperidone. Additionally, compound 47 possessed a favorable pharmacokinetic profile with oral bioavailability of 58.8% in rats. Furthermore, compound 47 displayed procognition properties in a novel object recognition task in rats. Taken together, compound 47 may constitute a novel class of atypical antipsychotic drugs for schizophrenia.
Collapse
Affiliation(s)
- Xudong Cao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yifang Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Minquan Yu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China.,Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|