1
|
Orzeł U, Barreto CAV, Filipek S, Moreira IS. GPCR oligomerization across classes: A2AR-mediated regulation of mGlu5R activation. Int J Biol Macromol 2025; 299:139880. [PMID: 39842585 DOI: 10.1016/j.ijbiomac.2025.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
The adenosine A2A receptor (A2AR), a class A GPCR, is a known player in neurological diseases, including Parkinson's disease and Alzheimer's disease, and is also implicated in SARS-CoV-2 infection. Recent studies have revealed its oligomerization with metabotropic glutamate receptor type 5 (mGlu5R), a class C G protein coupled receptor (GPCR) that exists in the homodimeric form. Simultaneous activation of both receptors synergistically enhances mGlu5R-mediated effects in the hippocampus. Despite their importance, the molecular mechanisms governing these interactions remain unclear. In this study, we used molecular modelling techniques, including molecular docking, extensive molecular dynamics (MD) simulations, and detailed analysis, to elucidate the interactions between mGlu5R and A2AR in the inactive and active states. Our findings provide molecular-level insights into the permissive role of A2AR in mGlu5R activation, demonstrating that the inactive A2AR interface within the oligomer blocks the mGlu5R transmembrane helix 6 (TM6), which is crucial for activation. Upon A2AR activation, the oligomer interface undergoes conformational rearrangement, exposing mGlu5R-TM6 and allowing for mGlu5R activation. Furthermore, we identified a pivotal role of the mGlu5R-TM4:A2AR-TM4 interface in facilitating mGlu5R activation. These results highlight the intricate architecture of the mGlu5R:A2AR oligomer, advancing our understanding of GPCR oligomerization and its regulatory mechanisms on receptor activity.
Collapse
Affiliation(s)
- Urszula Orzeł
- PhD Programme in Biosciences, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Carlos A V Barreto
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Sławomir Filipek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
2
|
Qian M, Sun Z, Chen X, Van Calenbergh S. Study of G protein-coupled receptors dimerization: From bivalent ligands to drug-like small molecules. Bioorg Chem 2023; 140:106809. [PMID: 37651896 DOI: 10.1016/j.bioorg.2023.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
In the past decades an increasing number of studies revealed that G protein-coupled receptors (GPCRs) are capable of forming dimers or even higher-ordered oligomers, which may modulate receptor function and act as potential drug targets. In this review, we briefly summarized the design strategy of bivalent GPCR ligands and mainly focused on how to use them to study and/or detect GPCP dimerization in vitro and in vivo. Bivalent ligands show specific properties relative to their corresponding monomeric ligands because they are able to bind to GPCR homodimers or heterodimers simultaneously. For example, bivalent ligands with optimal length of spacers often exhibited higher binding affinities for dimers compared to that of monomers. Furthermore, bivalent ligands displayed specific signal transduction compared to monovalent ligands. Finally, we give our perspective on targeting GPCR dimers from traditional bivalent ligands to more drug-like small molecules.
Collapse
Affiliation(s)
- Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Zhengyang Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
3
|
Li Y, Sun J, Wang X, Luo Z, Shao X, Li Y, Cao Q, Zhao S, Qian M, Chen X. Discovery and biological evaluation of cholic acid derivatives as potent TGR5 positive allosteric modulators. Bioorg Med Chem 2023; 92:117418. [PMID: 37536263 DOI: 10.1016/j.bmc.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
In this study, twenty-two novel cholic acid (CA) derivatives were designed and synthesized as potential Takeda G protein-coupled receptor 5 (TGR5) positive allosteric modulators (PAMs) using structure-based drug design (SBDD). GloSensor cAMP accumulation assay was employed to assess the functional activity and allosteric mechanism of final compounds. Biological results showed that all target compounds were able to activate the TGR5 in the cAMP formation assay. Remarkably, compound B1, selective methylation of 7-OH in CA, exhibited 5-fold higher activity for TGR5 compared to that of CA. Moreover, B1 positively modulate the functional activity of chenodeoxycholic acid (CDCA) in TGR5, indicating that B1 is a TGR5 PAM. On the other hand, 12-carbonyl derivative A1 displayed 7-fold higher potency for TGR5 relative to CA. Unexpectedly, compound A1 exhibited the same positive allosteric effect as B1, suggesting that A1 is a TGR5 PAM as well. Molecular modeling study revealed that 12-carbonyl in A1 and 12-OH in B1 formed H-bolds with the key amino acid Thr131, which are significant for TGR5 allosteric property. Taken together, we found two potent TGR5 PAMs A1 and B1 through SBDD, which could be used as lead compounds to further study TGR5 allosteric functionality.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Jingjing Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Xiao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Zhijie Luo
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Xuemei Shao
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Yingxiu Li
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Qirong Cao
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Shuai Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China.
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
4
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Zhao N, Wu W, Wang Y, Song K, Chen G, Chen Y, Wang R, Xu J, Cui K, Chen H, Tan W, Zhang J, Xiao Z. DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
7
|
Discovery of novel cholic acid derivatives as highly potent agonists for G protein-coupled bile acid receptor. Bioorg Chem 2021; 120:105588. [PMID: 34979448 DOI: 10.1016/j.bioorg.2021.105588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
In this study, fourteen new cholic acid (CA) derivatives were designed and synthesized, and the GloSensor cAMP accumulation assay indicated that all derivatives could activate the Takeda G protein-coupled receptor 5 (TGR5). Methylation of 7- and 12-hydroxyl groups in CA significantly increased TGR5 agonism for the new derivatives. For example, 7,12-dimethoxy derivative B1 exhibited 78-fold higher potency for TGR5 than the 7,12-dihydroxyl derivative A1 and 258-fold higher potency than CA itself. On the other hand, A1 positively modulated chenodeoxycholic acid (CDCA) functional activity in TGR5, whereas B1 did not show similar activity. Molecular docking experiments indicated that A1 formed a hydrogen bond between the 12-OH and amino acid Thr131 of TGR5, which is significant for its allosteric property. However, methylation at the 12-hydroxyl group in CA (derivative B1) disrupted this pivotal H-bond. Therefore, the free 12-hydroxyl group is essential for the CA derivatives in TGR5 allosteric agonism. Overall, we discovered a highly potent TGR5 agonist, B1, which can be used as lead compound for further study.
Collapse
|
8
|
Qian M, Zhou K, Wu Y, Luo Z, Xiao Z, Sun J, Zeng S, Yao Y, Zhao S, Chen X. Synthesis of Bitopic Ligands as Potent Dopamine D 2 Receptor Agonists. ChemMedChem 2021; 17:e202100681. [PMID: 34855308 DOI: 10.1002/cmdc.202100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/12/2022]
Abstract
In this study, we designed and synthesized twelve bitopic ligands as dopamine D2 receptor (D2 R) agonists. The forskolin-induced cAMP accumulation assay revealed that all the finial compounds are able to activate D2 R. Furthermore, bitopic ligand N-((trans)-4-(((2,3-dihydro-1H-inden-2-yl)(propyl)amino)methyl)cyclo-hexyl)-1H-pyrrolo[2,3-b]pyridine-2-carboxamide (11 b) showed 21-fold higher potency than lead compound propyl aminoindane (2) and 17-fold higher subtype selectivity for D2 R over D4 R, indicating that the optimal length of spacer affects the D2 R functionality. Molecular modeling study exhibited that 11 b formed an electrostatic interaction and two H-bonds with amino acid Asp114, which contributes significantly to the D2 R functional activity. Taken together, we discovered a bitopic ligand 11 b as potent D2 R agonist, which may be used as a tool compound for further study.
Collapse
Affiliation(s)
- Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Kuo Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yi Wu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhijie Luo
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhekai Xiao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Jingjing Sun
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Siyu Zeng
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yi Yao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Shuai Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
9
|
Qian M, Ricarte A, Wouters E, Dalton JAR, Risseeuw MDP, Giraldo J, Van Calenbergh S. Discovery of a true bivalent dopamine D 2 receptor agonist. Eur J Med Chem 2021; 212:113151. [PMID: 33450620 DOI: 10.1016/j.ejmech.2020.113151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Employing two different alkyne-modified dopamine agonists to construct bivalent compounds via click chemistry resulted in the identification of a bivalent ligand (11c) for dopamine D2 receptor homodimer, which, compared to its parent monomeric alkyne, showed a 16-fold higher binding affinity for the dopamine D2 receptor and a 5-fold higher potency in a cAMP assay in HEK 293T cells stably expressing D2R. Molecular modeling revealed that 11c can indeed bridge the orthosteric binding sites of a D2R homodimer in a relaxed conformation via the TM5-TM6 interface and allows to largely rationalize the results of the receptor assays.
Collapse
Affiliation(s)
- Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Adrián Ricarte
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
10
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
11
|
Chen X, Zheng Y, Song S, Liu Y, Wang Y, Huang Y, Zhang X, Zhang M, Zhao M, Wang Y, Li L. Design and Synthesis of Biotinylated Bivalent Carboline Derivatives as Potent Antitumor Agents. J Org Chem 2020; 85:11618-11625. [PMID: 32808519 DOI: 10.1021/acs.joc.0c01067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compound 6, a novel β-carboline comprising two 1-methyl-9H-β-carboline-3-carboxylic acids and a biotin moiety conjugated together using tris(2-aminoethyl)amine, was synthesized and tested for its cytotoxicity toward MCF-7 and HepG2 cell lines and antitumor potency in an S180 tumor-bearing mouse model. Compound 6 was delivered via biotin receptor-mediated endocytosis and exerted its therapeutic effects by intercalation binding with DNA. In vivo antitumor evaluations of 6 revealed that it is efficacious and exhibits low systemic toxicity.
Collapse
Affiliation(s)
- Xueyuan Chen
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yi Zheng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Songlin Song
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ying Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yi Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yong Huang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Meng Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Li Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
12
|
Poulie CBM, Liu N, Jensen AA, Bunch L. Design, Synthesis, and Pharmacological Characterization of Heterobivalent Ligands for the Putative 5-HT 2A/mGlu 2 Receptor Complex. J Med Chem 2020; 63:9928-9949. [PMID: 32815361 DOI: 10.1021/acs.jmedchem.0c01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the synthesis of the first series of heterobivalent ligands targeting the putative heteromeric 5-HT2A/mGlu2 receptor complex, based on the 5-HT2A antagonist MDL-100,907 and the mGlu2 ago-PAM JNJ-42491293. The functional properties of monovalent and heterobivalent ligands were characterized in 5-HT2A-, mGlu2/Gqo5-, 5-HT2A/mGlu2-, and 5-HT2A/mGlu2/Gqo5-expressing HEK293 cells using a Ca2+ imaging assay and a [3H]ketanserin binding assay. Pronounced functional crosstalk was observed between the two receptors in 5-HT2A/mGlu2 and 5-HT2A/mGlu2/Gqo5 cells. While the synthesized monovalent ligands retained the 5-HT2A antagonist and mGlu2 ago-PAM functionalities, the seven bivalent ligands inhibited 5-HT-induced responses in 5-HT2A/mGlu2 cells and both 5-HT- and Glu-induced responses in 5-HT2A/mGlu2/Gqo5 cells. However, no definitive correlation between the functional potency and spacer length of the ligands was observed, an observation substantiated by the binding affinities exhibited by the compounds in 5-HT2A, 5-HT2A/mGlu2, and 5-HT2A/mGlu2/Gqo5 cells. In conclusion, while functional crosstalk between 5-HT2A and mGlu2 was demonstrated, it remains unclear how these heterobivalent ligands interact with the putative receptor complex.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
13
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
14
|
Fernández-Dueñas V, Qian M, Argerich J, Amaral C, Risseeuw MD, Van Calenbergh S, Ciruela F. Design, Synthesis and Characterization of a New Series of Fluorescent Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulators. Molecules 2020; 25:molecules25071532. [PMID: 32230915 PMCID: PMC7180738 DOI: 10.3390/molecules25071532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, new drug discovery approaches based on novel pharmacological concepts have emerged. Allosteric modulators, for example, target receptors at sites other than the orthosteric binding sites and can modulate agonist-mediated activation. Interestingly, allosteric regulation may allow a fine-tuned regulation of unbalanced neurotransmitter’ systems, thus providing safe and effective treatments for a number of central nervous system diseases. The metabotropic glutamate type 5 receptor (mGlu5R) has been shown to possess a druggable allosteric binding domain. Accordingly, novel allosteric ligands are being explored in order to finely regulate glutamate neurotransmission, especially in the brain. However, before testing the activity of these new ligands in the clinic or even in animal disease models, it is common to characterize their ability to bind mGlu5Rs in vitro. Here, we have developed a new series of fluorescent ligands that, when used in a new NanoBRET-based binding assay, will facilitate screening for novel mGlu5R allosteric modulators.
Collapse
Affiliation(s)
- Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| | - Mingcheng Qian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Josep Argerich
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carolina Amaral
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Martijn D.P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| |
Collapse
|
15
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
16
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
17
|
Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art. Int J Mol Sci 2019; 20:ijms20122958. [PMID: 31213021 PMCID: PMC6627893 DOI: 10.3390/ijms20122958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have the propensity to form homo- and heterodimers. Dysfunction of these dimers has been associated with multiple diseases, e.g., pre-eclampsia, schizophrenia, and depression, among others. Over the past two decades, considerable efforts have been made towards the development of screening assays for studying these GPCR dimer complexes in living cells. As a first step, a robust in vitro assay in an overexpression system is essential to identify and characterize specific GPCR–GPCR interactions, followed by methodologies to demonstrate association at endogenous levels and eventually in vivo. This review focuses on protein complementation assays (PCAs) which have been utilized to study GPCR oligomerization. These approaches are typically fluorescence- and luminescence-based, making identification and localization of protein–protein interactions feasible. The GPCRs of interest are fused to complementary fluorescent or luminescent fragments that, upon GPCR di- or oligomerization, may reconstitute to a functional reporter, of which the activity can be measured. Various protein complementation assays have the disadvantage that the interaction between the reconstituted split fragments is irreversible, which can lead to false positive read-outs. Reversible systems offer several advantages, as they do not only allow to follow the kinetics of GPCR–GPCR interactions, but also allow evaluation of receptor complex modulation by ligands (either agonists or antagonists). Protein complementation assays may be used for high throughput screenings as well, which is highly relevant given the growing interest and effort to identify small molecule drugs that could potentially target disease-relevant dimers. In addition to providing an overview on how PCAs have allowed to gain better insights into GPCR–GPCR interactions, this review also aims at providing practical guidance on how to perform PCA-based assays.
Collapse
|
18
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
19
|
Wouters E, Marín AR, Dalton JAR, Giraldo J, Stove C. Distinct Dopamine D₂ Receptor Antagonists Differentially Impact D₂ Receptor Oligomerization. Int J Mol Sci 2019; 20:ijms20071686. [PMID: 30987329 PMCID: PMC6480712 DOI: 10.3390/ijms20071686] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2 receptors (D2R) are known to form transient homodimer complexes, of which the increased formation has already been associated with development of schizophrenia. Pharmacological targeting and modulation of the equilibrium of these receptor homodimers might lead to a better understanding of the critical role played by these complexes in physiological and pathological conditions. Whereas agonist addition has shown to prolong the D2R dimer lifetime and increase the level of dimer formation, the possible influence of D2R antagonists on dimerization has remained rather unexplored. Here, using a live-cell reporter assay based on the functional complementation of a split Nanoluciferase, a panel of six D2R antagonists were screened for their ability to modulate the level of D2LR dimer formation. Incubation with the D2R antagonist spiperone decreased the level of D2LR dimer formation significantly by 40–60% in real-time and after long-term (≥16 h) incubations. The fact that dimer formation of the well-studied A2a–D2LR dimer was not altered following incubation with spiperone supports the specificity of this observation. Other D2R antagonists, such as clozapine, risperidone, and droperidol did not significantly evoke this dissociation event. Furthermore, molecular modeling reveals that spiperone presents specific Tyr1995.48 and Phe3906.52 conformations, compared to clozapine, which may determine D2R homodimerization.
Collapse
Affiliation(s)
- Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Adrián Ricarte Marín
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - James Andrew Rupert Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Cortés A, Casadó-Anguera V, Moreno E, Casadó V. The heterotetrameric structure of the adenosine A 1-dopamine D 1 receptor complex: Pharmacological implication for restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:37-78. [PMID: 31229177 DOI: 10.1016/bs.apha.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions interacting with specific dopamine (DR) or adenosine (AR) receptors, respectively, expressed on the surface of target cells. These receptors are members of the family A of G protein-coupled receptors (GPCRs), which is the largest protein superfamily in mammalian genomes. GPCRs are target of about 40% of all current marketed drugs, highlighting their importance in clinical medicine. The striatum receives the densest dopamine innervations and contains the highest density of dopamine receptors. The modulatory role of adenosine on dopaminergic transmission depends largely on the existence of antagonistic interactions mediated by specific subtypes of DRs and ARs, the so-called A2AR-D2R and A1R-D1R interactions. Due to the dopamine/adenosine antagonism in the CNS, it was proposed that ARs and DRs could form heteromers in the neuronal cell surface. Therefore, adenosine can affect dopaminergic signaling through receptor-receptor interactions and by modulations in their shared intracellular pathways in the striatum and spinal cord. In this work we describe the allosteric modulations between GPCR protomers, focusing in those of adenosine and dopamine within the A1R-D1R heteromeric complex, which is involved in RLS. We also propose that the knowledge about the intricate allosteric interactions within the A1R-D1R heterotetramer, may facilitate the treatment of motor alterations, not only when the dopamine pathway is hyperactivated (RLS, chorea, etc.) but also when motor function is decreased (SCI, aging, PD, etc.).
Collapse
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|