1
|
Saha R, Pal R, Ganguly B, Majhi B, Dutta S. Mono-quinoxaline-induced DNA structural alteration leads to ZBP1/RIP3/MLKL-driven necroptosis in cancer cells. Eur J Med Chem 2024; 270:116377. [PMID: 38581731 DOI: 10.1016/j.ejmech.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.
Collapse
Affiliation(s)
- Rimita Saha
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritesh Pal
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaskar Ganguly
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Elfadil A, Ibrahem K, Abdullah H, Mokhtar JA, Al-Rabia MW, Mohammed HA. Synergistic Activity of 3-Hydrazinoquinoxaline-2-Thiol in Combination with Penicillin Against MRSA. Infect Drug Resist 2024; 17:355-364. [PMID: 38312520 PMCID: PMC10838510 DOI: 10.2147/idr.s448843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Background The growing resistance seen in various antibiotics, including those considered as last-resort options, underscores the pressing need for novel approaches and new substances to address MRSA infections. Combining antibiotics as a treatment approach can enhance effectiveness, expand the range of targeted bacteria, and minimize the likelihood of resistance emergence. This approach holds promise in addressing the escalating issue of antibiotic resistance. Purpose This study seeks to investigate the potential synergy between 3-hydrazinoquinoxaline-2-thiol and penicillin against a diverse array of MRSA isolates, thereby providing insights into their combined antimicrobial action. Methods Twenty-two clinical MRSA isolates subjected to broth microdilution to determine the Minimum Inhibitory Concentrations (MICs) of 3-hydrazinoquinoxaline-2-thiol and penicillin. Subsequently, a checkerboard assay was employed to evaluate the interaction between 3-hydrazinoquinoxaline-2-thiol and penicillin, focusing on the Fractional Inhibitory Concentration Index (FICI). Results The MICs of penicillin and 3-hydrazinoquinoxaline-2-thiol were determined for 22 clinical MRSA strains. Penicillin exhibited MICs within a range of 1024 to 128 µg/mL, while 3-hydrazinoquinoxaline-2-thiol displayed MICs varying from 64 to 8 µg/mL. Remarkably, the combination of 3-hydrazinoquinoxaline-2-thiol and penicillin yielded a synergistic effect, resulting in a significant reduction of MICs by up to 64-fold. Conclusion The potential of 3-hydrazinoquinoxaline-2-thiol in combination with penicillin as a viable solution against MRSA appears promising. However, to establish its practical utility, further extensive testing and experiments are essential.
Collapse
Affiliation(s)
- Abdelbagi Elfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| | - Hani Abdullah
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| | - Hafsa Alawad Mohammed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabic
| |
Collapse
|
3
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Talukdar A, Sarkar D. Catalyzing the Future of Medicinal Chemistry Research in India. J Med Chem 2023; 66:10868-10877. [PMID: 37561395 DOI: 10.1021/acs.jmedchem.3c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The present publication provides a comprehensive look at more than a decade (2010 to midyear of 2023) of medicinal chemistry research in India, focusing on contributions to medicinal chemistry and drug discovery from both Indian academia and industries. The work provides an overview of cutting-edge medicinal chemistry research along with the organic-transformation-based chemical research scenarios in India in the past decade. It also distinguishes areas of research as well as contributions from different federal research institutes, state universities, central universities, and private universities by their geographical locations around India. The paper takes broader stock of the situation by comparing the articles published in the two internationally acclaimed journals in the field, viz. Journal of Medicinal Chemistry and Organic Letters, which highlights the current research trends as well as the thrust needed at the grass-roots level to boost medicinal chemistry and drug discovery research in India. Finally, we believe that this discussion may create a pathway for policymakers and funding agencies to focus their efforts to motivate lesser inclined institutions as well as provide incentives to the institutions primarily involved in medicinal chemistry research, as they already have built capacity for such research.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Majhi B, Ganguly S, Palit S, Parwez A, Saha R, Basu G, Dutta S. Sequence-Specific Dual DNA Binding Modes and Cytotoxicities of N-6-Functionalized Norcryptotackieine Alkaloids. JOURNAL OF NATURAL PRODUCTS 2023; 86:1667-1676. [PMID: 37285507 DOI: 10.1021/acs.jnatprod.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Norcryptotackieine (1a) belongs to the indoloquinoline class of alkaloids isolated from Cryptolepis sanguinolenta, a plant species that has been traditionally used as an antimalarial agent. Additional structural modifications of 1a can potentially enhance its therapeutic potency. Indoloquinolines such as cryptolepine, neocryptolepine, isocryptolepine, and neoisocryptolepine show restricted clinical applications owing to their cytotoxicity deriving from interactions with DNA. Here, we examined the effect of substitutions at the N-6 position of norcryptotackieine on the cytotoxicity, as well as structure-activity relationship studies pertaining to sequence specific DNA-binding affinities. The representative compound 6d binds DNA in a nonintercalative/pseudointercalative fashion, in addition to nonspecific stacking on DNA, in a sequence selective manner. The DNA-binding studies clearly establish the mechanism of DNA binding by N-6-substituted norcryptotackieines and neocryptolepine. The synthesized norcryptotackieines 6c,d and known indoloquinolines were screened on different cell lines (HEK293, OVCAR3, SKOV3, B16F10, and HeLa) to assess their cytotoxicity. Norcryptotackieine 6d (IC50 value of 3.1 μM) showed 2-fold less potency when compared to the natural indoloquinoline cryptolepine 1c (IC50 value of 1.64 μM) in OVCAR3 (ovarian adenocarcinoma) cell lines.
Collapse
Affiliation(s)
- Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudakshina Ganguly
- Department of Biophysics, Centenary Campus Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Aymen Parwez
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rimita Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gautam Basu
- Department of Biophysics, Centenary Campus Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Mandi C, Mahata T, Patra D, Chakraborty J, Bora A, Pal R, Dutta S. Cleavage of Abasic Sites in DNA by an Aminoquinoxaline Compound: Augmented Cytotoxicity and DNA Damage in Combination with an Anticancer Drug Chlorambucil in Human Colorectal Carcinoma Cells. ACS OMEGA 2022; 7:6488-6501. [PMID: 35252645 PMCID: PMC8892855 DOI: 10.1021/acsomega.1c04962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The elevated level of endogenous oxidative DNA damage and spontaneous deamination of DNA bases in cancer cells substantially increase the abasic sites in DNA via base excision repairs (BERs). Thus, the predominant BER pathway is a favorable target for cancer therapy. Interestingly, elevated levels of glutathione (GSH) in certain cancer cells, such as colon cancer, are associated with acquired resistance to several chemotherapeutic agents, which increase the difficulty for the treatment of cancer. Here, we have reported an ideal nitro group-containing monoquinoxaline DNA intercalator (1d), which is reduced into a fluorescent quinoxaline amine (1e) in the presence of GSH; concurrently, 1e (∼100 nM concentration) selectively causes the in vitro cleavage of abasic sites in DNA. 1e also binds to the tetrahydrofuran analogue of the abasic site in the nanomolar to low micromolar range depending on the nucleotide sequence opposite to the abasic site and also induces a structural change in abasic DNA. Furthermore, the amine compound (1e) augments the response of the specific bifunctional alkylating drug chlorambucil at a much lower concentration in the human colorectal carcinoma cell (HCT-116), and their combination shows a potential strategy for targeted therapy. Alone or in combination, 1d and 1e lead to a cascade of cellular events such as induction of DNA double-stranded breaks and cell arrest at G0/G1 and G2/M phases, eventually leading to apoptotic cell death in HCT-116 cells. Hence, the outcome of this study provides a definitive approach that will help optimize the therapeutic applications for targeting the abasic site in cancer cells.
Collapse
Affiliation(s)
- Chandra
Sova Mandi
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Tridib Mahata
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Dipendu Patra
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeet Chakraborty
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Achyut Bora
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritesh Pal
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Dutta
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Pal R, Chakraborty J, Mukhopadhyay TK, Kanungo A, Saha R, Chakraborty A, Patra D, Datta A, Dutta S. Substituent effect of benzyl moiety in nitroquinoxaline small molecules upon DNA binding: Cumulative destacking of DNA nucleobases leading to histone eviction. Eur J Med Chem 2021; 229:113995. [PMID: 34802835 DOI: 10.1016/j.ejmech.2021.113995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Cooperative disruption of Watson-Crick hydrogen bonds, as well as base-destacking, is shown to be triggered by a quinoxaline-based small molecule consisting of an N,N-dimethylaminopropyl tether, and a para-substituted benzyl moiety. This events lead to superstructure formation and DNA condensation as evident from biophysical experiments and classical molecular dynamics simulations. The DNA superstructure formation by mono-quinoxaline derivatives is highly entropically favored and predominantly driven by hydrophobic interactions. Furthermore, oversupercoiling of DNA and base-destacking cumulatively induces histone eviction from in-vitro assembled nucleosomes at lower micromolar concentrations implicating biological relevance. The DNA structural modulation and histone eviction capacity of the benzyl para-substituents are in the order: -I > -CF3> -Br > -Me > -OMe > -OH, which is largely guided by the polarity of benzyl para-substituent and the resulting molecular topology. The most hydrophobic derivative 3c with para-iodo benzyl moiety causes maximal disruption of base pairing and generation of superstructures. Both these events gradually diminish as the polarity of the benzyl para-substituent increases. On the other hand, quinoxaline derivatives having heterocyclic ring instead of benzyl ring, or in the absence of N,N-dimethylamino head-group, is incapable of inducing any DNA structural change and histone eviction. Further, the quinoxaline compounds displayed potent anticancer activities against different cancer cell lines which directly correlates with the hydrophobic effects of the benzyl para-substituents. Overall, the present study provides new insights into the mechanistic approach of DNA structural modulation driven histone eviction guided by the hydrophobicity of synthesized compounds leading to cellular cytotoxicity towards cancer cells.
Collapse
Affiliation(s)
- Ritesh Pal
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jeet Chakraborty
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ajay Kanungo
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rimita Saha
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Chakraborty
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Dipendu Patra
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Activities of Quinoxaline, Nitroquinoxaline, and [1,2,4]Triazolo[4,3-a]quinoxaline Analogs of MMV007204 against Schistosoma mansoni. Antimicrob Agents Chemother 2021; 65:AAC.01370-20. [PMID: 33257453 DOI: 10.1128/aac.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in millions of people a year shows the need to further develop a pipeline of new drugs to treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against Schistosoma mansoni In this study, 47 synthesized compounds containing quinoxaline moieties were first assayed against the larval stage of this parasite, newly transformed schistosomula (NTS); of these, 16 killed over 70% NTS at 10 µM. Further testing against NTS and adult S. mansoni yielded three compounds with 50% inhibitory concentrations (IC50s) of ≤0.31 µM against adult S. mansoni and selectivity indices of ≥8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body weight to S. mansoni -infected mice yielded only moderate worm burden reduction (WBR) (9.3% to 46.3%). The discrepancy between these compounds' good in vitro activities and their poor in vivo activities indicates that optimization of their pharmacokinetic properties may yield compounds with greater bioavailabilities and better antischistosomiasis activities in vivo.
Collapse
|