1
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
2
|
Cheng S, Yu T, Li J, Liang Y, Luo S, Zhu Q. Copper/Chiral Phosphoric-Acid-Catalyzed Intramolecular Reductive Isocyanide-Alkene (1 + 2) Cycloaddition: Enantioselective Construction of 2-Azabicyclo[3.1.0]hexanes. J Am Chem Soc 2024; 146:7956-7962. [PMID: 38471146 DOI: 10.1021/jacs.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Enantioenriched 2-azabicyclo[3.1.0]hexanes are accessed from readily available allyl substituted α-isocyanoesters by intramolecular (1 + 2) cycloaddition with the olefinic moiety and isocyano carbon as the respective C2 and C1 units. Cyclopropanation is initiated by 1,1-hydrocupration of isocyanide followed by formimidoylcopper to copper α-aminocarbenoid equilibration and subsequent (1 + 2) cycloaddition. The unprecedented copper/chiral phosphoric acid (CPA) catalytic system can be operated in the presence of water under air, delivering a variety of 2-azabicyclo[3.1.0]hexanes containing an angular all-carbon quaternary stereocenter in good to excellent yields and enantioselectivity.
Collapse
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yingxiang Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
3
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Matera C, Papotto C, Dallanoce C, De Amici M. Advances in small molecule selective ligands for heteromeric nicotinic acetylcholine receptors. Pharmacol Res 2023; 194:106813. [PMID: 37302724 DOI: 10.1016/j.phrs.2023.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
5
|
Lin HZ, Qi Z, Wu QM, Jiang YY, Peng JB. Palladium-catalyzed intramolecular asymmetric hydrocyclopropanylation of alkynes: synthesis of cyclopropane-fused γ-lactams. Chem Sci 2023; 14:7564-7568. [PMID: 37449077 PMCID: PMC10337766 DOI: 10.1039/d3sc02168h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
A palladium-catalyzed intramolecular asymmetric hydrocyclopropanylation of alkynes via C(sp3)-H activation has been developed for the synthesis of cyclopropane-fused γ-lactams. The presented strategy proceeds in a selective and 100% atom-economical manner. A range of cyclopropane-fused γ-lactams were prepared from readily available substrates in good yields and enantioselectivities with a chiral phosphoramidite ligand.
Collapse
Affiliation(s)
- Han-Ze Lin
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Zhuang Qi
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Qi-Min Wu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Yong-Yu Jiang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
6
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
7
|
Safety, Tolerability, and Pharmacokinetics of Ropanicant (SUVN-911), a Novel Alpha4 Beta2 Nicotinic Acetylcholine Receptor (α4β2 nAChR) Antagonist, in Healthy Adult and Elderly Subjects. Clin Drug Investig 2022; 42:747-762. [PMID: 35963959 DOI: 10.1007/s40261-022-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Ropanicant hydrochloride (previously known as SUVN-911, hereinafter referred to as ropanicant) is a novel alpha4 beta2 nicotinic acetylcholine receptor (α4β2 nAchR) antagonist being developed for the treatment of major depressive disorder. The objectives of the present studies were to evaluate the safety, tolerability, and pharmacokinetics of ropanicant after single and multiple ascending doses and to evaluate the effect of food, sex, and age on its pharmacokinetics in healthy subjects. METHODS Two phase I studies have been conducted for ropanicant. Study 1 is a randomized, double-blind, placebo-controlled, first-in-human study to evaluate the safety, tolerability, and pharmacokinetics of single ascending doses (0.5, 6, 15, 30, and 60 mg) and multiple ascending doses (15, 30, and 45 mg) of ropanicant administered orally for 14 days to healthy male subjects. In Study 2, the effect of food, sex, and age on ropanicant pharmacokinetics was evaluated following a single 30-mg oral dose. RESULTS Ropanicant at single doses up to 60 mg and multiple doses up to 45 mg once daily was found to be safe and well tolerated in healthy subjects. The most frequently reported adverse events were headache and nausea. Ropanicant exposures were more than dose proportional following single and multiple administrations. Urinary excretion of unchanged ropanicant was low across the doses. Upon multiple dosing, 1.5- to 2.5-fold higher exposures for maximum concentration and 1.6- to 4.0-fold higher exposures for area under the concentration-time curve from time 0-24 h were observed on day 14 as compared with day 1. Sex had an effect on the pharmacokinetics of ropanicant as a 64% higher area under the concentration-time curve from time 0 to 24 h and a 26% higher maximum concentration was observed in female adults when compared with male adults. Plasma exposures were comparable in fasted versus fed conditions and in adult versus elderly subjects. CONCLUSIONS Ropanicant was found to be safe and well tolerated following single and multiple oral administrations in healthy subjects. Ropanicant showed nonlinear pharmacokinetics and accumulation following multiple dosing. Urinary excretion represents an insignificant elimination pathway for ropanicant. Ropanicant pharmacokinetics were sex dependent, and food and age had no effect on its pharmacokinetics. CLINICAL TRIAL REGISTRATION NCT03155503 and NCT03551288.
Collapse
|
8
|
Nirogi R, Abraham R, Jayarajan P, Goura V, Kallepalli R, Medapati RB, Tadiparthi J, Goyal VK, Pandey SK, Subramanian R, Petlu S, Thentu JB, Palacharla VRC, Gagginapally SR, Mohammed AR, Jasti V. Ropanicant (SUVN-911), an α4β2 nicotinic acetylcholine receptor antagonist intended for the treatment of depressive disorders: pharmacological, behavioral, and neurochemical characterization. Psychopharmacology (Berl) 2022; 239:2215-2232. [PMID: 35298691 DOI: 10.1007/s00213-022-06108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Ropanicant (SUVN-911) (3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo (3.1.0) hexane hydrochloride) is a novel α4β2 nicotinic acetylcholine receptor (nAChR) antagonist being developed for the treatment of depressive disorders. OBJECTIVES Pharmacological and neurochemical characterization of Ropanicant to support a potential molecule for the treatment of depressive disorders. METHODS Ropanicant was assessed for antidepressant-like activity using the rat forced swimming test (FST) and differential reinforcement of low rate -72 s (DRL-72 s). Alleviation of anhedonia was assessed in chronic mild stress model using sucrose preference test. To understand the mechanism of action, serotonin levels, ionized calcium-binding adaptor molecule 1 (Iba1), and brain-derived neurotrophic factor (BDNF) were determined. The onset of antidepressant-like activity was determined using the reduction in submissive behavior assay. The effects on cognition and sexual functions were assessed using the object recognition task and sexual dysfunction assay respectively. Interaction of Ropanicant, TC-5214, and methyllycaconitine (MLA) with citalopram was investigated individually in mice FST. RESULTS Ropanicant exhibited antidepressant like properties in the FST and DRL-72 s. A significant reduction in anhedonia was observed in the sucrose preference test. Oral administration of Ropanicant produced a significant increase in serotonin and BDNF levels, with a reduction in the Iba1 activity. The onset of antidepressant like effect with Ropanicant was within a week of treatment, and was devoid of cognitive dulling and sexual dysfunction. While Ropanicant potentiated the effect of citalopram in FST, such an effect was not observed with MLA or TC-5214. CONCLUSIONS Preclinical studies with Ropanicant support the likelihood of its therapeutic utility in the treatment of depressive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Venkat Jasti
- Suven Life Sciences Ltd, Hyderabad, 500034, India
| |
Collapse
|
9
|
Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 2): Glutamatergic, Cholinergic, Sestrin Modulators, and Other Agents. Front Pharmacol 2022; 13:884155. [PMID: 35847011 PMCID: PMC9284317 DOI: 10.3389/fphar.2022.884155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Many investigational drugs with antidepressant activity are currently explored in different phases of clinical research, with indications such as major depressive disorder, treatment-resistant major depression, bipolar depression, post-partum depression, and late-life depression. Although the vast majority of the antidepressants in clinical use are based on the monoaminergic hypothesis of depression, recent data supported the launching on the market of two new, non-monoamine-modulating drugs. Esketamine for treatment-resistant major depression and brexanolone for post-partum depression are two exceptions from the monoaminergic model, although their use is still limited by high costs, unique way of administration (only intravenously for brexanolone), physicians’ reluctance to prescribe new drugs, and patients’ reticence to use them. Glutamatergic neurotransmission is explored based on the positive results obtained by intranasal esketamine, with subanesthetic intravenous doses of ketamine, and D-cycloserine, traxoprodil, MK-0657, AXS-05, AVP-786, combinations of cycloserine and lurasidone, or dextromethorphan and quinidine, explored as therapeutic options for mono- or bipolar depression. Sestrin modulators, cholinergic receptor modulators, or onabotulinumtoxinA have also been investigated for potential antidepressant activity. In conclusion, there is hope for new treatments in uni- and bipolar depression, as it became clear, after almost 7 decades of monoamine-modulating antidepressants, that new pathogenetic pathways should be targeted to increase the response rate in this population.
Collapse
|
10
|
Abstract
Efforts to develop catalytic carbene transfer reactions have largely relied on the use of diazo precursors. However, diazoalkanes are susceptible to undergoing violent exothermic decomposition unless they contain stabilizing substituents. Consequently, most synthetic methods are restricted to diazoacetates or related derivatives. In this Perspective, we describe an alternative approach to carbene transfer catalysis based on the generation of metal carbenoids from gem-dihaloalkanes and gem-dihaloalkenes. These precursors are readily available and stable in unsubstituted form or with a variety of donor and acceptor substituents. Using this approach, it is possible to design cyclopropanation reactions with non-stabilized carbenes, such as methylene, isopropylidene, and vinylidene. Furthermore, due to the distinct mechanistic pathways of these reactions, novel modes of cycloaddition can be carried out, including [4 + 1]-cycloadditions.
Collapse
Affiliation(s)
- Christopher Uyeda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Annah E. Kalb
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Xiao YG, Wu HB, Chen JS, Li X, Qiu ZK. Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking. Metab Brain Dis 2022; 37:1071-1094. [PMID: 35230627 DOI: 10.1007/s11011-022-00930-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
About 350 million people worldwide suffered from depression, but less than half of the patients received effective and regular treatments. Traditional Chinese Medicine (TCM) such as pinellia has been proven effective for antidepressant treatment with fewer side effects. However, the exact mechanisms remain unclear. Herein, we use the methods of network pharmacology and molecular docking to analyze the effective monomer components of pinellia and reveal the involved signaling pathways to produce antidepressant effects. TCMSP, BATMAN-TCM, and TCMID databases were utilized to analyze the bioactive ingredients and target genes derived from pinellia via the screening the molecular weight (MW), oral bioavailability (OB), blood-brain barrier (BBB) and drug similarity (DL). OMIM, TTD, DisGeNET, GeneCards and DrugBank databases were used to obtain key genes of depression. Then, the networks of protein-protein interaction (PPI) and "medicine-ingredients-targets-pathways" were built. The target signaling pathways were enriched by GO and KEGG by using R language. Furthermore, bioactive ingredients binding of the targets were verified by molecular docking. Nine active monomer ingredients and 96 pivotal gene targets were selected from pinellia. 10,124 disease genes and 87 drug-disease intersecting genes were verified. GO analysis proposed that the receptor activity of neurotransmitter, postsynaptic neurotransmitter, G protein-coupled neurotransmitter, and acetylcholine through the postsynaptic membrane could be modulated by pinellia. KEGG pathway analysis revealed that pinellia influenced depression-related neural tissue interaction, cholinergic synapse, serotonin activated synapse and calcium signaling pathway. Besides, the reliability and accuracy of results obtained from the indirect network pharmacology were validated by molecular docking. The bioactive components of pinellia made significant antidepressant effects by regulating the key target genes/proteins in the pathophysiology of depression.
Collapse
Affiliation(s)
- Yu-Gang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
| |
Collapse
|
12
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
14
|
Vázquez-León P, Miranda-Páez A, Chávez-Reyes J, Allende G, Barragán-Iglesias P, Marichal-Cancino BA. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci Bull 2021; 37:1493-1509. [PMID: 34302618 DOI: 10.1007/s12264-021-00756-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
The periaqueductal gray (PAG) is a complex mesencephalic structure involved in the integration and execution of active and passive self-protective behaviors against imminent threats, such as immobility or flight from a predator. PAG activity is also associated with the integration of responses against physical discomfort (e.g., anxiety, fear, pain, and disgust) which occurs prior an imminent attack, but also during withdrawal from drugs such as morphine and cocaine. The PAG sends and receives projections to and from other well-documented nuclei linked to the phenomenon of drug addiction including: (i) the ventral tegmental area; (ii) extended amygdala; (iii) medial prefrontal cortex; (iv) pontine nucleus; (v) bed nucleus of the stria terminalis; and (vi) hypothalamus. Preclinical models have suggested that the PAG contributes to the modulation of anxiety, fear, and nociception (all of which may produce physical discomfort) linked with chronic exposure to drugs of abuse. Withdrawal produced by the major pharmacological classes of drugs of abuse is mediated through actions that include participation of the PAG. In support of this, there is evidence of functional, pharmacological, molecular. And/or genetic alterations in the PAG during the impulsive/compulsive intake or withdrawal from a drug. Due to its small size, it is difficult to assess the anatomical participation of the PAG when using classical neuroimaging techniques, so its physiopathology in drug addiction has been underestimated and poorly documented. In this theoretical review, we discuss the involvement of the PAG in drug addiction mainly via its role as an integrator of responses to the physical discomfort associated with drug withdrawal.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, 07738, Gustavo A. Madero, Mexico City, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Paulino Barragán-Iglesias
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| |
Collapse
|
15
|
Menchikov LG, Shulishov EV, Tomilov YV. Recent advances in the catalytic cyclopropanation of unsaturated compounds with diazomethane. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main achievements and development trends of the past 10–15 years related to the catalytic cyclopropanation of unsaturated compounds with diazomethane are integrated and analyzed. The attention is focused on the most efficient catalysts based on palladium compounds. Data on the effects of substrate structure and nature of catalyst components on the regio- and stereoselectivity of these reactions are systematized. Characteristic features of safe methods for diazomethane generation are considered, including the use of membrane technologies and continuous-flow and in situ preparation methods, which have prospects for industrial application.
The bibliography includes 281 references.
Collapse
|