1
|
Haider W, Pan W, Wang D, Niaz W, Zaman MK, Ullah R, Ullah S, Rafiq M, Yu B, Cong H. Maackiain: A comprehensive review of its pharmacology, synthesis, pharmacokinetics and toxicity. Chem Biol Interact 2025; 405:111294. [PMID: 39477181 DOI: 10.1016/j.cbi.2024.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Maackiain is an important component of some herbs in traditional Chinese medicine (TCM), such as Sophora flavescens Aiton, Spatholobus suberectus Dunn and Paeonia lactiflora Pall. Maackiain belongs to the second largest group of isoflavonoids the pterocarpans that is widespread in several plant genera, for example Maackia, Sophora, Caragana, Trifolium and Millettia. Recently, maackiain has attracting more attention because of its numerous pharmacological properties. This review offers the first extensive overview of maackiain natural isolation sources, pharmacological activities, synthesis, toxicity, and pharmacokinetic properties. The literature search published between 1962 and 2023 were reported by collecting the data from Google Scholar, Science Direct, SpringerLink, Web of Science, PubMed, Wiley Online, China National Knowledge Infrastructure, Scopus and structure search in SciFinder. Finding reveals the broad range of pharmacological activities of maackiain, such as anti-inflammatory, sepsis prevention, anti-cancer, anti-allergic, anti-osteolytic, anti-obesity, nephroprotective, antifungal, neuroprotective, anti-leukemic, antimalarial and inflammasome activation. Based on findings of pharmacokinetic studies, it is observed that maackiain possesses a low level of bioavailability and absorption and a rapid rate of elimination, but maackiain absorption rates in the extract were comparatively much higher than pure forms because of higher solubility and may reduce the metabolism by other ingredients present in the extract. Toxicity investigations revealed that maackiain is non-toxic to the majority of cells and selectively cytotoxic. After witnessing the beneficial pharmacological properties of maackiain, it is believed to be an emerging drug candidate for the treatment of inflammation, allergic, nephroprotection in T2D, depression, or Alzheimer's disease and obesity. However, future research topics should likely to include that elucidates its mechanism of toxicity and in vivo proper tracking of its conducts in drug delivery system. Integrating toxicity and efficiency, as well as structure modification, are critical approaches to enhancing its pharmacological properties and oral bioavailability.
Collapse
Affiliation(s)
- Waqas Haider
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei Pan
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Waqas Niaz
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Kashif Zaman
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Raza Ullah
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shakir Ullah
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles. Qingdao University, Qingdao, 266000, Shandong, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
2
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
3
|
Schilling M, Levasseur M, Barbier M, Oliveira-Correia L, Henry C, Touboul D, Farine S, Bertsch C, Gelhaye E. Wood Degradation by Fomitiporia mediterranea M. Fischer: Exploring Fungal Adaptation Using Metabolomic Networking. J Fungi (Basel) 2023; 9:jof9050536. [PMID: 37233247 DOI: 10.3390/jof9050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.
Collapse
Affiliation(s)
| | - Marceau Levasseur
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | - Lydie Oliveira-Correia
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Céline Henry
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- CNRS, Laboratoire de Chimie Moléculaire (LCM), UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Sibylle Farine
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Eric Gelhaye
- INRAE, IAM, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
4
|
Identification of noninvasive diagnostic biomarkers for ectopic pregnancy using data-independent acquisition (DIA)proteomics: a pilot study. Sci Rep 2022; 12:19992. [PMID: 36411308 PMCID: PMC9678856 DOI: 10.1038/s41598-022-23374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
At present, the diagnosis of ectopic pregnancy mainly depends on transvaginal ultrasound and β-hCG. However, these methods may delay diagnosis and treatment time. Therefore, we aimed to screen for serological molecular markers for the early diagnosis of ectopic pregnancy (EP).Using data-independent acquisition (DIA)proteomics, the differential proteins in serum were selected between the intrauterine pregnancy (IP) and EP groups. Then, the expression levels of these differential proteins were measured by enzyme-linked immunosorbent assay. The diagnostic value of the serum biomarkers was evaluated by receiver operating characteristic curve analysis.GSTO1, ECM-1 and β-hCG showed significant differences between the EP and IP groups (P < 0.05). The combination of GSTO1/ECM-1/β-hCG had an area under the curve of 0.93 (95% CI 0.88-0.99), a sensitivity of 88.89% (95% CI 73.94-96.89) and a specificity of 86.11% (95% CI 70.50-95.33) with a likelihood ratio of 6.40.The combination of GSTO1/ECM-1/β-hCG may be developed into a possible approach for the early diagnosis of EP.
Collapse
|