1
|
Nemoto T, Harada S, Kuribara T, Harada S. Recent advances in the synthesis of 3,4-fused tricyclic indoles. Org Biomol Chem 2025. [PMID: 40260714 DOI: 10.1039/d5ob00202h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The 3,4-fused tricyclic indole framework is a key structural motif in numerous bioactive natural products and pharmaceuticals, thus, it has drawn much attention in synthetic organic chemistry. Synthetic organic chemists have expended substantial effort in developing efficient methods for constructing this privileged molecular framework. In this review, we highlight the advances made in this area, particularly since 2018.
Collapse
Affiliation(s)
- Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Takahito Kuribara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
- Institute for Advanced Academic Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shinji Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
- Institute for Advanced Academic Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Yu J, Zhang Y, Zhang L, Shi J, Wang K, Yuan W, Lin Z, Ning S, Wang B, Wang X, Qiu Y, Hsiang T, Zhang L, Liu X, Zhu G. New N-acylated aminoalkanoic acids from tea roots derived biocontrol agent Clonostachys rosea 15020. Synth Syst Biotechnol 2024; 9:684-693. [PMID: 38846337 PMCID: PMC11153888 DOI: 10.1016/j.synbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Four new N-acylated aminoalkanoic acids, namely clonoroseins E-H (1-4), together with three previously identified analogs, clonoroseins A, B, and D (5-7), were identified from the endophytic fungus Clonostachys rosea strain 15020 (CR15020), using Feature-based Molecular Networking (FBMN). The elucidation of their chemical structures, including their absolute configurations, was achieved through spectroscopic analysis combined with quantum chemical calculations. Bioinformatics analyses suggested that an iterative type I HR-PKS (CrsE) generates the polyketide side chain of these clonoroseins. Furthermore, a downstream adenylate-forming enzyme of the PKS (CrsD) was suspected to function as an amide synthetase. CrsD potentially facilitates the transformation of the polyketide moiety into an acyl-AMP intermediate, followed by nucleophilic substitution with either β-alanine or γ-aminobutyric acid to produce amide derivatives. These findings significantly expand our understanding of PKS-related products originating from C. rosea and also underscore the powerful application of FBMN analytical methods in characterization of new compounds.
Collapse
Affiliation(s)
- Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Zhang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Li Zhang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Jie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zexu Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shangqian Ning
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuyang Qiu
- School of Insurance, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Han YY, Yang W, Lan P, Khalil ZG, Capon RJ, Banwell MG. Synthesis of the Corrected Structure Assigned to Clonorosin B, an Alkaloid Obtained from the Soil-derived Fungus Clonostachys rosea YRS-06. JOURNAL OF NATURAL PRODUCTS 2024; 87:2310-2316. [PMID: 39162422 DOI: 10.1021/acs.jnatprod.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The revised structure, 2, assigned to the title natural product has been prepared by chemical synthesis using a reaction sequence involving six simple steps starting from 2,3-dimethoxybenzaldehyde and proceeding via intermediates 8, 12, and 14. A comparison of the NMR data acquired on synthetically derived compound 2 with those reported for the natural product reveals an excellent match. Preliminary biological screening of compound 2 along with analogues/precursors 7, 9, 10, 11, 13, 14, and 15 revealed that none exhibited antibacterial, antifungal or cytotoxic effects.
Collapse
Affiliation(s)
- Yong-Ying Han
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, University of Queensland St Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland St Lucia, Queensland 4072, Australia
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Christinaki AC, Myridakis AI, Kouvelis VN. Genomic insights into the evolution and adaptation of secondary metabolite gene clusters in fungicolous species Cladobotryum mycophilum ATHUM6906. G3 (BETHESDA, MD.) 2024; 14:jkae006. [PMID: 38214578 PMCID: PMC10989895 DOI: 10.1093/g3journal/jkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
5
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
7
|
Lv B, Zhao X, Guo Y, Li S, Sun M. Serine protease CrKP43 interacts with MAPK and regulates fungal development and mycoparasitism in Clonostachys chloroleuca. Microbiol Spectr 2023; 11:e0244823. [PMID: 37831480 PMCID: PMC10715147 DOI: 10.1128/spectrum.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycoparasites play important roles in the biocontrol of plant fungal diseases, during which they secret multiple hydrolases such as serine proteases to degrade their fungal hosts. In this study, we demonstrated that the serine protease CrKP43 was involved in C. chloroleuca development and mycoparasitism with the regulation of Crmapk. To the best of our knowledge, it is the first report on the functions and regulatory mechanisms of serine proteases in C. chloroleuca. Our findings will provide new insight into the regulatory mechanisms of serine proteases in mycoparasites and contribute to clarifying the mechanisms underlying mycoparasitism of C. chloroleuca, which will facilitate the development of highly efficient fungal biocontrol agents as well.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Yao S, Zhang R, Wang J, Gu L, Hu Z, Zhang Y. A new diketopiperazine-type alkaloid from the endophytic fungus Penicillium expansum. Nat Prod Res 2023; 37:3716-3721. [PMID: 35848376 DOI: 10.1080/14786419.2022.2099391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
A chemical investigation on an endophytic fungus Penicillium expansum isolated from the medicinal plant Plantago depressa Willd. (Plantaginaceae) afforded one new diketopiperazine-type alkaloid, namely penicimine A (1), as well as two known congeners (2 and 3). Their structures were elucidated by widespread spectroscopic data, and the absolute configurations of 1 and 2 were further confirmed by single-crystal X-ray diffraction analyses. Compound 1 represented the first example of benzyl-containing diketopiperazine-type alkaloid bearing a methyl group attached at C-15 position. Compound 1 showed anti-inflammatory activity against LPS-induced nitric oxide (NO) production in RAW264.7 mouse macrophages with an IC50 value of 25.65 μM.
Collapse
Affiliation(s)
- Si Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runge Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhang Y, Zhao X, Cao Y, Chen M, Shi Z, Wu M, Feng H, Sun L, Ma Z, Tan X, Chen G, Qi C, Zhang Y. Bioactive Indole Alkaloid from Aspergillus amoenus TJ507 That Ameliorates Hepatic Ischemia/Reperfusion Injury. JOURNAL OF NATURAL PRODUCTS 2023; 86:2059-2064. [PMID: 37560942 DOI: 10.1021/acs.jnatprod.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a major factor contributing to the failure of hepatic resection and liver transplantation. As part of our ongoing investigation into bioactive compounds derived from fungi, we isolated eight indole alkaloids (1-8) from the endophytic fungus Aspergillus amoenus TJ507. Among these alkaloids, one previously undescribed compound, amoenamide D (1), was identified. The planar structure of 1 was elucidated by extensive spectroscopic analysis, including HRESIMS and NMR spectra. The absolute configuration of 1 was elucidated by using electronic circular dichroism calculations. Notably, in the CoCl2-induced hepatocyte damage model, notoamide Q (3) exhibited significant anti-hypoxia injury activity. Furthermore, in a murine hepatic ischemia/reperfusion injury model, treatment with 3 prevents IRI-induced liver damage and hepatocellular apoptosis. Consequently, 3 might serve as a potential lead compound to prevent hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Zhao
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Wu
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hao Feng
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Lingjuan Sun
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibo Ma
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaosheng Tan
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Gang Chen
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Lv B, Guo Y, Zhao X, Li S, Sun M. Glucose-6-phosphate 1-Epimerase CrGlu6 Contributes to Development and Biocontrol Efficiency in Clonostachys chloroleuca. J Fungi (Basel) 2023; 9:764. [PMID: 37504752 PMCID: PMC10381721 DOI: 10.3390/jof9070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Clonostachys chloroleuca (formerly classified as C. rosea) is an important mycoparasite active against various plant fungal pathogens. Mitogen-activated protein kinase (MAPK) signaling pathways are vital in mycoparasitic interactions; they participate in responses to diverse stresses and mediate fungal development. In previous studies, the MAPK-encoding gene Crmapk has been proven to be involved in mycoparasitism and the biocontrol processes of C. chloroleuca, but its regulatory mechanisms remain unclear. Aldose 1-epimerases are key enzymes in filamentous fungi that generate energy for fungal growth and development. By protein-protein interaction assays, the glucose-6-phosphate 1-epimerase CrGlu6 was found to interact with Crmapk, and expression of the CrGlu6 gene was significantly upregulated when C. chloroleuca colonized Sclerotinia sclerotiorum sclerotia. Gene deletion and complementation analyses showed that CrGlu6 deficiency caused abnormal morphology of hyphae and cells, and greatly reduced conidiation. Moreover, deletion mutants presented much lower antifungal activities and mycoparasitic ability, and control efficiency against sclerotinia stem rot was markedly decreased. When the CrGlu6 gene was reinserted, all biological characteristics and biocontrol activities were recovered. These findings provide new insight into the mechanisms of glucose-6-phosphate 1-epimerase in mycoparasitism and help to further reveal the regulation of MAPK and its interacting proteins in the biocontrol of C. chloroleuca.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Wang L, Kiffe-Delf AL, Ostermann PN, Simons VE, He D, Gao Y, van Geelen L, Dai HF, Zhao YX, Schaal H, Mándi A, Király SB, Kurtán T, Liu Z, Kalscheuer R. Asperphenalenones Isolated from the Biocontrol Agent Clonostachys rosea and Their Antimicrobial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37436951 DOI: 10.1021/acs.jafc.3c00447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Clonostachys rosea is a fungus widely distributed on Earth and has a high capacity to adapt to complex environments in soil, plants, or sea. It is an endophyte that can be used as a potential biocontrol agent to protect plants from pathogenic fungi, nematodes, and insects. However, the spectrum of secondary metabolites produced by C. rosea has only scarcely been studied. In the present study, eight new phenalenones, asperphenalenones F-M (1-8), together with two known derivatives, asperphenalenones E and B (9 and 10), were isolated from the axenic rice culture of this fungus. The structures of the new compounds were elucidated by nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, electronic circular dichroism, and gas chromatography-mass spectrometry analyses. Asperphenalenones J-M (5-8) are unusual phenalenone adducts that are conjugated to diterpenoid glycosides. Asperphenalenones F and H showed moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimal inhibitory concentrations of 12.5 and 25 μM, respectively. Asperphenalenone B exhibited low antiviral activity against the human immunodeficiency virus replication. Furthermore, asperphenalenones F and H exhibited low cytotoxicity against Jurkat cells, while all other compounds were devoid of cytotoxicity.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna-Lene Kiffe-Delf
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Viktor Emanuel Simons
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Di He
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, People's Republic of China
| | - You-Xing Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, People's Republic of China
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, Post Office Box 400, 4002 Debrecen, Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, Post Office Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, Post Office Box 400, 4002 Debrecen, Hungary
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Umer SM, Solangi M, Khan KM, Saleem RSZ. Indole-Containing Natural Products 2019-2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022; 27:7586. [PMID: 36364413 PMCID: PMC9655573 DOI: 10.3390/molecules27217586] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Indole alkaloids represent a large subset of natural products, with more than 4100 known compounds. The majority of these alkaloids are biologically active, with some exhibiting excellent antitumor, antibacterial, antiviral, antifungal, and antiplasmodial activities. Consequently, the natural products of this class have attracted considerable attention as potential leads for novel therapeutics and are routinely isolated, characterized, and profiled to gauge their biological potential. However, data on indole alkaloids, their various structures, and bioactivities are complex due to their diverse sources, such as plants, fungi, bacteria, sponges, tunicates, and bryozoans; thus, isolation methods produce an incredible trove of information. The situation is exacerbated when synthetic derivatives, as well as their structures, bioactivities, and synthetic schemes, are considered. Thus, to make such data comprehensive and inform researchers about the current field's state, this review summarizes recent reports on novel indole alkaloids. It deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids. In addition, several syntheses and semi-syntheses of indole-containing derivatives and their bioactivities are reported between January 2019 and July 2022.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
13
|
Zhang D, Li S, Fan M, Zhao C. The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade. Drug Des Devel Ther 2022; 16:3493-3555. [PMID: 36248243 PMCID: PMC9553542 DOI: 10.2147/dddt.s377921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
The secondary metabolites isolated from soil fungi have received more and more attention, especially new compounds that exhibited good biological activities. In this review, a total of 546 new compounds are included in the relevant literature since 2011. The new compounds are isolated from soil fungi, We divided these compounds into seven categories, including alkaloids, terpenoids, steroids, ketones, phenylpropanoids, quinones, esters, lactones, etc. In addition, the biological activities and structure-activity relationships of these compounds have also been fully discussed. The activities of these compounds are roughly divided into eight categories, including anticancer activity, antimicrobial activity, anti-inflammatory activity, antioxidant activity, antiviral activity, antimalarial activity, immunosuppressive activity and other activities. Since natural products are an important source of new drugs, this review may have a positive guiding effect on drug screening.
Collapse
Affiliation(s)
- Danyu Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Shoujie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Mohan Fan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China,Correspondence: Changqi Zhao, Tel +86-5880-5046, Email
| |
Collapse
|
14
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2021. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:905-924. [PMID: 36111695 DOI: 10.1080/10286020.2022.2117169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The new natural products reported in 2021 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2021 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Novitskiy IM, Kutateladze AG. DU8ML: Machine Learning-Augmented Density Functional Theory Nuclear Magnetic Resonance Computations for High-Throughput In Silico Solution Structure Validation and Revision of Complex Alkaloids. J Org Chem 2022; 87:4818-4828. [PMID: 35302771 DOI: 10.1021/acs.joc.2c00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Machine learning (ML) profoundly improves the accuracy of the fast DU8+ hybrid density functional theory/parametric computations of nuclear magnetic resonance spectra, allowing for high throughput in silico validation and revision of complex alkaloids and other natural products. Of nearly 170 alkaloids surveyed, 35 structures are revised with the next-generation ML-augmented DU8 method, termed DU8ML.
Collapse
Affiliation(s)
- Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
16
|
Vu LP, Gütschow M. Diketomorpholines: Synthetic Accessibility and Utilization. ACS OMEGA 2022; 7:48-54. [PMID: 35036677 PMCID: PMC8756451 DOI: 10.1021/acsomega.1c05964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Diketomorpholines (DKMs; morpholine-2,5-diones) possess a six-membered ring with a lactone and lactam moiety and belong to the family of cyclodepsipeptides. In this review, the synthetic accessibility of DKMs is summarized and their utilization, in particular, for ring-opening polymerization reactions, is highlighted. The occurrence of the DKM scaffold in natural products encompasses small monocyclic compounds but also complex, polycyclic representatives with a fused DKM ring.
Collapse
|
17
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asporychalasin from Aspergillus oryzae.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|