1
|
Selepe MA. Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies. ChemMedChem 2024; 19:e202400420. [PMID: 39091268 PMCID: PMC11617652 DOI: 10.1002/cmdc.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Isoflavones are phenolic natural compounds with a C6C3C6 framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.
Collapse
Affiliation(s)
- Mamoalosi A. Selepe
- Department of Chemistry, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPrivate bag X 20Hatfield0028South Africa
| |
Collapse
|
2
|
Conrad Oppenheimer V, Le P, Tran C, Wang H, Resendiz MJE. C3-Chlorination of C2-substituted benzo[ b]thiophene derivatives in the presence of sodium hypochlorite. Org Biomol Chem 2024; 22:8958-8966. [PMID: 39415734 PMCID: PMC11484177 DOI: 10.1039/d4ob01185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Benzo[b]thiophene rings are common synthons for the development of novel drugs and materials, and thus, the discovery of facile ways for their functionalization is of value. In this work, a new method for the C3-chlorination of C2-substituted benzothiophene derivatives is described. The chlorine source is sodium hypochlorite pentahydrate (NaOCl·5H2O), and optimal transformations occur in aqueous acetonitrile at 65-75 °C to provide the corresponding C3-halogenated products in variable yields (30-65%). The reaction occurs in the presence of vinyl and alkyl groups, while the presence of alcohols leads to competing oxidation reactions at the heterobenzylic position. The presence of a carbonyl group at the C2-position inhibited the halogenation reaction, while the use of benzofuran led to a highly exothermic reaction, presumably via the formation of a peroxide intermediate. Reactions carried out at lower temperatures led to side reactions associated with competing oxidative processes. To gain a better understanding of the mechanism of the reaction, DFT calculations were carried out, where the heteroatom enables the formation of a hypochlorous acidium ion that serves to generate a C2-C3 chloronium ion intermediate in a step-wise manner, which in turn leads to the formation of an S-stabilized C2-carbocation that undergoes re-aromatization to the corresponding C3-chlorinated products. To probe potential synthetic applications, a model C3-chloro derivative was coupled with phenylboronic acid using standard Suzuki-Miyaura coupling conditions.
Collapse
Affiliation(s)
- Vincent Conrad Oppenheimer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA.
| | - Peter Le
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA.
| | - Cathy Tran
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA.
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA.
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA.
| |
Collapse
|
3
|
Kouno H, Amuti S, Saito Y, Fukuyoshi S, Miyake K, Goto M, Newman DJ, O'Keefe BR, Lee KH, Nakagawa-Goto K. Isolation, Characterization, and Antiproliferative Activity of Terpenoids from the Tropical Plant Turraea delphinensis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1763-1777. [PMID: 38970504 DOI: 10.1021/acs.jnatprod.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The isolation, structure determination, and biological evaluation of constituents from the organic extract of Turraea delphinensis Wahlert (Meliaceae) resulted in the isolation of 51 secondary metabolites, including 14 new terpenoids (six cycloartanes, four tirucallanes/euphanes, three limonoids, and a 7-keto sterol). Among the new compounds, 1 is the first triterpenoid with a trioxaspiro[4.4]nonane side chain, while 11-13 are the first 17-γ-lactone tetranortriterpenoids with four oxygenated functional groups at C-1, -3, -6, and -7. The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines, including a vinblastine-resistant cell line.
Collapse
Affiliation(s)
- Hayato Kouno
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Saidanxia Amuti
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shuichi Fukuyoshi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsunori Miyake
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Masuo Goto
- The Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
| | - David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NCI at Frederick, Frederick, Maryland 21702-1201, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NCI at Frederick, Frederick, Maryland 21702-1201, United States
| | - Kuo-Hsiung Lee
- The Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- The Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
4
|
Zhang ZJ, Liao YT, Wang W, Yang C, Li D, Shao LD. Discovery of acetophenone/piperazin-2-one hybrids as selective anti-TNBC cancer agents by causing DNA damage. Bioorg Med Chem Lett 2024; 108:129802. [PMID: 38777278 DOI: 10.1016/j.bmcl.2024.129802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Twenty-five acetophenone/piperazin-2-one (APPA) hybrids were designed and synthesized based on key pharmacophores found in anti-breast cancer drugs Neratinib, Palbociclib, and Olaparib. Compound 1j exhibited good in vitro antiproliferative activity (IC50 = 6.50 μM) and high selectivity (SI = 9.2 vs HER2-positive breast cancer cells SKBr3; SI = 7.3 vs normal breast cells MCF-10A) against triple negative breast cancer (TNBC) cells MDA-MB-468. In addition, 1j could selectively cause DNA damage, inducing the accumulation of γH2AX and P53 in MDA-MB-468 cells. It also reduced the phosphorylation level of P38 and the expression of HSP70, which further prevented the repair of DNA damage and caused cells S/G2-arrest leading to MDA-MB-468 cells death.
Collapse
Affiliation(s)
- Zi-Jun Zhang
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yu-Ting Liao
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wei Wang
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Chen Yang
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Resources, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
5
|
Kobayashi A, Saito Y, Miyake K, Fukuyoshi S, Newman DJ, O'Keefe BR, Lee KH, Nakagawa-Goto K. Caged Xanthones and Biphenyls Isolated from the Tropical Plant Garcinia lateriflora. JOURNAL OF NATURAL PRODUCTS 2024; 87:266-275. [PMID: 38251859 DOI: 10.1021/acs.jnatprod.3c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four cytotoxic heptacyclic caged-xanthones [gambogefic acids B-E (1-4)], a cytotoxic hexacyclic caged-xanthone [garcilatelic acid (5)], and four biphenyl derivatives [garcilatelibiphenyls A-D (6-9)] were newly isolated in a phytochemical study of a 50% MeOH/CH2Cl2 extract of Garcinia lateriflora (Clusiaceae). The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines including a vincristine-resistant line. The new caged-xanthones displayed potent activity with IC50 values from 0.5 to 6.7 μM against all tested tumor cell lines.
Collapse
Affiliation(s)
- Ayano Kobayashi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsunori Miyake
- Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shuichi Fukuyoshi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NCI at Frederick, Frederick, Maryland 21702-1201, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NCI at Frederick, Frederick, Maryland 21702-1201, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, 40447, Taiwan
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
6
|
Amuti S, Saito Y, Fukuyoshi S, Miyake K, Newman DJ, O’Keefe BR, Lee KH, Nakagawa-Goto K. Unusual Vilasinin-Class Limonoids from Trichilia rubescens. Molecules 2024; 29:651. [PMID: 38338394 PMCID: PMC10856392 DOI: 10.3390/molecules29030651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 μM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 μM against all tumor cell lines, including multi-drug-resistant cells.
Collapse
Affiliation(s)
- Saidanxia Amuti
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (S.A.); (Y.S.); (S.F.)
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (S.A.); (Y.S.); (S.F.)
| | - Shuichi Fukuyoshi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (S.A.); (Y.S.); (S.F.)
| | - Katsunori Miyake
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan;
| | - David J. Newman
- Natural Products Branch, Developmental Therapeutics Program, Center of Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702-1201, USA; (D.J.N.); (B.R.O.)
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Center of Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702-1201, USA; (D.J.N.); (B.R.O.)
- Molecular Targets Program, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (S.A.); (Y.S.); (S.F.)
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA
| |
Collapse
|
7
|
Caleffi GS, Rosa AS, de Souza LG, Avelar JLS, Nascimento SMR, de Almeida VM, Tucci AR, Ferreira VN, da Silva AJM, Santos-Filho OA, Miranda MD, Costa PRR. Aurones: A Promising Scaffold to Inhibit SARS-CoV-2 Replication. JOURNAL OF NATURAL PRODUCTS 2023; 86:1536-1549. [PMID: 37257024 DOI: 10.1021/acs.jnatprod.3c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aurones are a small subgroup of flavonoids in which the basic C6-C3-C6 skeleton is arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one. These compounds are structural isomers of flavones and flavonols, natural products reported as potent inhibitors of SARS-CoV-2 replication. Herein, we report the design, synthesis, and anti-SARS-CoV-2 activity of a series of 25 aurones bearing different oxygenated groups (OH, OCH3, OCH2OCH3, OCH2O, OCF2H, and OCH2C6H4R) at the A- and/or B-rings using cell-based screening assays. We observed that 12 of the 25 compounds exhibit EC50 < 3 μM (8e, 8h, 8j, 8k, 8l, 8m, 8p, 8q, 8r, 8w, 8x, and 8y), of which five presented EC50 < 1 μM (8h, 8m, 8p, 8q, and 8w) without evident cytotoxic effect in Calu-3 cells. The substitution of the A- and/or B-ring with OCH3, OCH2OCH3, and OCF2H groups seems beneficial for the antiviral activity, while the corresponding phenolic derivatives showed a significant decrease in the anti-SARS-CoV-2 activity. The most potent compound of the series, aurone 8q (EC50 = 0.4 μM, SI = 2441.3), is 2 to 3 times more effective than the polyphenolic flavonoids myricetin (2) and baicalein (1), respectively. Investigation of the five more active compounds as inhibitors of SARS-CoV-2 3CLpro based on molecular dynamic calculations suggested that these aurones should detach from the active site of 3CLpro, and, probably, they could bind to another SARS-CoV-2 protein target (either receptor or enzyme).
Collapse
Affiliation(s)
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | | | | | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | - Vivian N Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Liu ZQ. What about the progress in the synthesis of flavonoid from 2020? Eur J Med Chem 2022; 243:114671. [DOI: 10.1016/j.ejmech.2022.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|