1
|
An Q, Li N, Zhao Z, Wang N, Wang X, Yang X, Yang D, Zhang L, Lu Y, Du G, Chan HCS. Two Novel Metformin Carboxylate Salts and the Accidental Discovery of Two 1,3,5-Triazine Antihyperglycemic Agent. ACS OMEGA 2023; 8:48028-48041. [PMID: 38144133 PMCID: PMC10734001 DOI: 10.1021/acsomega.3c06721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Metformin (MET), commonly marketed as a hydrochloride salt (MET-HCl) for better pharmacokinetic profile over the free base, would release a high concentration of chloride ions and cause adverse gastrointestinal effects. The preparation of chloride-free MET salts could potentially circumvent this issue. In this study, seven carboxylic acids (formic acid, acetic acid, malonic acid, succinic acid, fumaric acid, cinnamic acid, and acetylsalicylic acid) were used for preparing MET carboxylate salts. When compared with MET-HCl, all MET salts/salt hydrates show lower dissolution rates in pH 6.8 phosphate buffer. However, the cinnamic acid and acetylsalicylic acid show significantly higher dissolution rates in the forms of MET salt/salt hydrate. In the permeability test, the permeability of the MET in all of the salts was not improved. However, the permeability of cinnamic acid in the MET cinnamate is reduced, and the permeability of acetylsalicylic acid in the MET acetylsalicylate is increased. Meanwhile, at a higher crystallization temperature, the acetone solvent and a hydrolyzed product of acetylsalicylic acid react with MET respectively, leading to two unexpected 1,3,5-triazine derivatives. The results of in vitro bioactivity assays indicate that one of the triazine molecules promote glucose consumption more effectively than MET-HCl, and had relatively weak lactate production ability at low concentration. This glucose metabolism regulating compound may serve as a novel lead antihyperglycemic agent for further optimization.
Collapse
Affiliation(s)
- Qi An
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Na Li
- Beijing
City Key Laboratory of Drug Target and Screening Research, National
Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, P.R. China
| | - Zhehui Zhao
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Beijing Key Laboratory of Active Substances Discovery and Drugability
Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Nuoqi Wang
- Beijing
City Key Laboratory of Drug Target and Screening Research, National
Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, P.R. China
| | - Xueying Wang
- BayRay
Innovation Center, Shenzhen Bay Laboratory, A2202, Gaoke Innovation Center, Guangqiao Road,
Guangming District Shenzhen, Guangdong 518000, P.R. China
| | - Xiuying Yang
- Beijing
City Key Laboratory of Drug Target and Screening Research, National
Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, P.R. China
| | - Dezhi Yang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Li Zhang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yang Lu
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Guanhua Du
- Beijing
City Key Laboratory of Drug Target and Screening Research, National
Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, P.R. China
| | - H. C. Stephen Chan
- Shenzhen
Zhongke Cedar Tree Trading Company, Shenzhen, Guangdong 518017, P.R. China
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Hassan HA, Hassan AR, Mohamed EA, Al-Khdhairawi A, Karkashan A, Attar R, Allemailem KS, Al Abdulmonem W, Shimizu K, Abdel-Rahman IAM, Allam AE. Conducting the RBD of SARS-CoV-2 Omicron Variant with Phytoconstituents from Euphorbia dendroides to Repudiate the Binding of Spike Glycoprotein Using Computational Molecular Search and Simulation Approach. Molecules 2022; 27:2929. [PMID: 35566281 PMCID: PMC9099834 DOI: 10.3390/molecules27092929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Natural constituents are still a preferred route for counteracting the outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has spread in many countries, which has raised awareness of the role of natural constituents in attempts to contribute to therapeutic protocols. (2) Methods: Using various chromatographic techniques, triterpenes (1-7), phenolics (8-11), and flavonoids (12-17) were isolated from Euphorbia dendroides and computationally screened against the receptor-binding domain (RBD) of the SARS-CoV-2 Omicron variant. As a first step, molecular docking calculations were performed for all investigated compounds. Promising compounds were subjected to molecular dynamics simulations (MD) for 200 ns, in addition to molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) to determine binding energy. (3) Results: MM/PBSA binding energy calculations showed that compound 14 (quercetin-3-O-β-D-glucuronopyranoside) and compound 15 (quercetin-3-O-glucuronide 6″-O-methyl ester) exhibited strong inhibition of Omicron, with ΔGbinding of -41.0 and -32.4 kcal/mol, respectively. Finally, drug likeness evaluations based on Lipinski's rule of five also showed that the discovered compounds exhibited good oral bioavailability. (4) Conclusions: It is foreseeable that these results provide a novel intellectual contribution in light of the decreasing prevalence of SARS-CoV-2 B.1.1.529 and could be a good addition to the therapeutic protocol.
Collapse
Affiliation(s)
- Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ahmed R. Hassan
- Desert Research Center, Medicinal and Aromatic Plants Department, Cairo 11753, Egypt;
| | - Eslam A.R. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, Minia 61511, Egypt;
| | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Alaa Karkashan
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.K.); (R.A.)
| | - Roba Attar
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.K.); (R.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
4
|
Robertson LP, Moodie LWK, Holland DC, Jandér KC, Göransson U. Sulfadiazine Masquerading as a Natural Product from Scilla madeirensis (Scilloideae). JOURNAL OF NATURAL PRODUCTS 2020; 83:1305-1308. [PMID: 32208615 PMCID: PMC7307949 DOI: 10.1021/acs.jnatprod.0c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The structure of 2,4-(4'-aminobenzenamine)pyrimidine (1), a pyrimidine alkaloid previously isolated from the bulbs of Scilla madeirensis (Asparagaceae, synonym Autonoë madeirensis), has been revised. These conclusions were met via comparison of reported NMR and EIMS data with those obtained from synthetic standards. The corrected structure is the antibiotic sulfadiazine (2), which has likely been isolated as a contaminant from the site of collection. The reported bioactivity of 1 as an α1-adrenoceptor antagonist should instead be ascribed to sulfadiazine. Our findings appear to show another example of an anthropogenic contaminant being identified as a natural product and emphasize the importance of considering the biosynthetic origins of isolated compounds within a phylogenetic context.
Collapse
Affiliation(s)
- Luke P. Robertson
- Plant
Ecology and Evolution, Department of Ecology and Genetics, Evolutionary
Biology Centre, Uppsala University, 75236 Uppsala, Sweden
- Pharmacognosy,
Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Lindon W. K. Moodie
- Drug
Design and Discovery, Department of Medicinal Chemistry, Biomedical
Centre, Uppsala University, 75123 Uppsala, Sweden
- Uppsala
Antibiotic Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Darren C. Holland
- Environmental
Futures Research Institute, Griffith University, Southport 4222, Gold Coast, Australia
| | - K. Charlotte Jandér
- Plant
Ecology and Evolution, Department of Ecology and Genetics, Evolutionary
Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Ulf Göransson
- Pharmacognosy,
Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|