1
|
Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, Liu Z. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Mar Drugs 2024; 22:531. [PMID: 39728106 DOI: 10.3390/md22120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a neurotoxin that binds to sodium channels and blocks sodium conduction. Importantly, TTX has been increasingly detected in edible aquatic organisms. Because of this and the lack of specific antidotes, TTX poisoning is now a major threat to public health. However, it is of note that ultra-low dose TTX is an excellent analgesic with great medicinal value. These contradictory effects highlight the need for further research to elucidate the impacts and functional mechanisms of TTX. This review summarizes the latest research progress in relation to TTX sources, analogs, mechanisms of action, detection methods, poisoning symptoms, therapeutic options, biosynthesis pathways, and mechanisms of transport and accumulation in pufferfish. This review also provides a theoretical basis for reducing the poisoning risks associated with TTX and for establishing an effective system for its use and management to ensure the safety of fisheries and human health.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Ruimin Cui
- College of Food Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| |
Collapse
|
2
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
3
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
4
|
Yaegashi Y, Kudo Y, Ueyama N, Onodera KI, Cho Y, Konoki K, Yotsu-Yamashita M. Isolation and Biological Activity of 9- epiTetrodotoxin and Isolation of Tb-242B, Possible Biosynthetic Shunt Products of Tetrodotoxin from Pufferfish. JOURNAL OF NATURAL PRODUCTS 2022; 85:2199-2206. [PMID: 35994072 DOI: 10.1021/acs.jnatprod.2c00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX, 1) is a potent voltage-gated sodium channel blocker detected in certain marine and terrestrial organisms. We report here a new TTX analogue, 9-epiTTX (2), and a TTX-related compound, Tb-242B (4), isolated from the pufferfish Takifugu flavipterus and Dichotomyctere ocellatus, respectively. NMR analysis suggested that 2 exists as a mixture of hemilactal and 10,8-lactone forms, whereas other reported TTX analogues are commonly present as an equilibrium mixture of hemilactal and 10,7-lactone forms. Compound 2 and TTX were confirmed not to convert to each other by incubation under neutral and acidic conditions at 37 °C for 24 h. Compound 4 was identified as the 9-epimer of Tb-242A (3), previously reported as a possible biosynthetic precursor of TTX. Compound 4 was partially converted to 3 by incubation in a neutral buffer at 37 °C for 7 days, whereas 3 was not converted to 4 under this condition. Compound 2 was detected in several TTX-containing marine animals and a newt. Mice injected with 600 ng of 2 by intraperitoneal injection did not show any adverse symptoms, suggesting that the C-9 configuration in TTX is critical for its biological activity. Based on the structures, 2 and 4 were predicted to be shunt products for TTX biosynthesis.
Collapse
Affiliation(s)
- Yuji Yaegashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Nozomi Ueyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ken-Ichi Onodera
- Faculty of Agriculture and Marine Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
5
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Mass spectrometry-guided discovery of new analogues of bicyclic phosphotriester salinipostin and evaluation of their monoacylglycerol lipase inhibitory activity. Biosci Biotechnol Biochem 2022; 86:1333-1342. [PMID: 35918181 DOI: 10.1093/bbb/zbac131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogues (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogues inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
7
|
Freire VF, Gubiani JR, Spencer TM, Hajdu E, Ferreira AG, Ferreira DAS, de Castro Levatti EV, Burdette JE, Camargo CH, Tempone AG, Berlinck RGS. Feature-Based Molecular Networking Discovery of Bromopyrrole Alkaloids from the Marine Sponge Agelas dispar. JOURNAL OF NATURAL PRODUCTS 2022; 85:1340-1350. [PMID: 35427139 PMCID: PMC9680911 DOI: 10.1021/acs.jnatprod.2c00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Investigation of the marine sponge Agelas dispar MeOH fractions using feature-based molecular networking, dereplication, and isolation led to the discovery of new bromopyrrole-derived metabolites. An in-house library of bromopyrrole alkaloids previously isolated from A. dispar and Dictyonella sp. was utilized, along with the investigation of an MS/MS fragmentation of these compounds. Our strategy led to the isolation and identification of the disparamides A-C (1-3), with a novel carbon skeleton. Additionally, new dispyrins B-F (4-8) and nagelamides H2 and H3 (9 and 10) and known nagelamide H (11), citrinamine B (12), ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) were also isolated and identified by analysis of spectroscopic data. Analysis of MS/MS fragmentation data and molecular networking analysis indicated the presence of hymenidin (16), oroidin (17), dispacamide (18), monobromodispacamide (19), keramadine (20), longamide B (21), methyl ester of longamide B (22), hanishin (23), methyl ester of 3-debromolongamide B (24), and 3-debromohanishin (25). Antibacterial activity of ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) was evaluated against susceptible and multi-drug-resistant ESKAPE pathogenic bacteria Klabsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterococcus faecalis. Dibromoageliferin (15) displayed the most potent antimicrobial activity against all tested susceptible and MDR strains. Compounds 13-15 presented no significant hemolytic activity up to 100 μM.
Collapse
Affiliation(s)
- Vítor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Tara M Spencer
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040, Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Dayana A S Ferreira
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Erica V de Castro Levatti
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Carlos Henrique Camargo
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Andre G Tempone
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
8
|
Pearson KC, Tarvin RD. A review of chemical defense in harlequin toads (Bufonidae: Atelopus). Toxicon X 2022; 13:100092. [PMID: 35146414 PMCID: PMC8801762 DOI: 10.1016/j.toxcx.2022.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Toads of the genus Atelopus are chemically defended by a unique combination of endogenously synthesized cardiotoxins (bufadienolides) and neurotoxins which may be sequestered (guanidinium alkaloids). Investigation into Atelopus small-molecule chemical defenses has been primarily concerned with identifying and characterizing various forms of these toxins while largely overlooking their ecological roles and evolutionary implications. In addition to describing the extent of knowledge about Atelopus toxin structures, pharmacology, and biological sources, we review the detection, identification, and quantification methods used in studies of Atelopus toxins to date and conclude that many known toxin profiles are unlikely to be comprehensive because of methodological and sampling limitations. Patterns in existing data suggest that both environmental (toxin availability) and genetic (capacity to synthesize or sequester toxins) factors influence toxin profiles. From an ecological and evolutionary perspective, we summarize the possible selective pressures acting on Atelopus toxicity and toxin profiles, including predation, intraspecies communication, disease, and reproductive status. Ultimately, we intend to provide a basis for future ecological, evolutionary, and biochemical research on Atelopus.
Collapse
Affiliation(s)
- Kannon C. Pearson
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
10
|
Hanifin CT, Kudo Y, Yotsu-Yamashita M. Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 118:101-130. [PMID: 35416518 DOI: 10.1007/978-3-030-92030-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The North American newt genera Taricha and Notophthalmus (order Caudata) are well known for the combination of potent toxicity, aposematic coloration, and striking defense postures that protects these animals from predation. This suite of traits is centered around the neurotoxin tetrodotoxin, which causes paralysis and death in metazoans by disrupting the initiation and propagation of electrical signals in the nerves and muscles. Tetrodotoxin defends newts from predation across multiple life history stages and its role in generating arms-race coevolution between Taricha newts and garter snake (genus Thamnophis) predators is well studied. However, understanding the broader picture of chemical defenses in Taricha and Notophthalmus requires an expanded comprehension of the defensive chemical ecology of tetrodotoxin that includes possible coevolutionary interactions with insect egg predators, protection against parasites, as well as mimicry complexes associated with tetrodotoxin and aposematic coloration in both genera. Herein the authors review what is known about the structure, function, and pharmacology of tetrodotoxin to explore its evolution and chemical ecology in the North American newt. Focus is made specifically on the origin and possible biosynthesis of tetrodotoxin in these taxa as well as providing an expanded picture of the web of interactions that contribute to landscape level patterns of toxicity and defense in Taricha and Notophthalmus.
Collapse
Affiliation(s)
- Charles T Hanifin
- Department of Biology, Utah State University, 320 N. Aggie Blvd, Vernal, UT, 84078, USA.
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science & Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
11
|
Chimetto Tonon LA, Rua C, Crnkovic CM, Bernardi DI, Pires Junior OR, Haddad CFB, Pedrosa CSG, Souza LRQ, Rehen SK, de Azevedo GPR, Thompson CC, Thompson FL, Berlinck RGS. Microbiome associated with the tetrodotoxin-bearing anuran Brachycephalus pitanga. Toxicon 2021; 203:139-146. [PMID: 34653444 DOI: 10.1016/j.toxicon.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
The genus Brachycephalus includes small species of aposematic anurans known as microendemic, occurring in the mountains of the Atlantic Forest. Brachycephalus ephippium, B. nodoterga and B. pernix have been reported to contain the neurotoxin tetrodotoxin in skin and viscera. The biological conservation of several Brachycephalus species is currently threatened by climate change, deforestation, and the pandemic caused by the fungus Batrachochytrium dendrobatidis (Bd). Despite the well-known importance of amphibians' associated bacteria in the defensive role against pathogens, there is still a poor understanding of amphibian microbiome composition. The present study investigated the composition of B. pitanga microbial community and the presence of TTX in the host and in cultures of bacterial isolates, using a combination of metagenomics, bacterial culture isolation, mass spectrometry and metabolomic analyses. Results of culture-dependent and -independent analyses characterized the microbial communities associated with the skin and viscera of B. pitanga. Mass spectrometry analysis indicated the presence of TTX in host tissues, while bacterial production of TTX was not observed under the experimental conditions used in this investigation. This is the first report confirming the occurrence of TTX in B. pitanga.
Collapse
Affiliation(s)
- Luciane A Chimetto Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil.
| | - Cintia Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Camila M Crnkovic
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Departamento de Tecnologia Bioquímico-Farmacêutica (FBT), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Osmindo R Pires Junior
- Laboratório de Toxinologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | | | | | - Stevens K Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Gustavo P R de Azevedo
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Fabiano L Thompson
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil.
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
12
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Kudo Y, Hanifin CT, Yotsu-Yamashita M. Identification of Tricyclic Guanidino Compounds from the Tetrodotoxin-Bearing Newt Taricha granulosa. Org Lett 2021; 23:3513-3517. [PMID: 33830775 DOI: 10.1021/acs.orglett.1c00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthesis of the potent neurotoxin tetrodotoxin (TTX, 1) is still unresolved. We used MS-guided screening and nuclear magnetic resonance analyses including long-range HSQMBC to characterize two novel skeletal tricyclic guanidino compounds, Tgr-288 (2a and 2b) and Tgr-210 (3), from the TTX-bearing newt, Taricha granulosa. The presence of these compounds in toxic newts is congruent with a previously proposed pathway for TTX biosynthesis in terrestrial organisms that includes a monoterpene precursor and the production of structurally diversified guanidino compounds.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Charles T Hanifin
- Department of Biology, Utah State University, Uintah Basin Campus, 320 North Aggie Boulevard (2000 W.), Vernal, Utah 84078, United States
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
14
|
Mebs D, Yotsu-Yamashita M. Acquiring toxicity of a newt, Cynops orientalis. Toxicon 2021; 198:32-35. [PMID: 33933520 DOI: 10.1016/j.toxicon.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tetrodotoxin (TTX) contents of wild-caught Chinese red-bellied newts, Cynops orientalis, and their offspring captive-reared from eggs to metamorphosed juveniles, were analysed using post-column LC-fluorescent detection (LC-FLD) and high resolution hydrophilic interaction liquid chromatography/mass spectrometry (HR-HILIC-LC/MS). TTX was detected in the parent newts and their eggs, but not in the larvae and juveniles raised under artificial condition over 20 months. However, juveniles reared in the presence of their parents, contained TTX-concentrations up to 8.05 μg/g. The origin of TTX may be implied from a close connection between the parents and their offspring.
Collapse
Affiliation(s)
- Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt, Germany.
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8572, Japan
| |
Collapse
|
15
|
Nishikawa K, Noguchi T, Kikuchi S, Maruyama T, Araki Y, Yotsu-Yamashita M, Morimoto Y. Tetrodotoxin Framework Construction from Linear Substrates Utilizing a Hg(OTf)2-Catalyzed Cycloisomerization Reaction: Synthesis of the Unnatural Analogue 11-nor-6,7,8-Trideoxytetrodotoxin. Org Lett 2021; 23:1703-1708. [DOI: 10.1021/acs.orglett.1c00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Keisuke Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Takayuki Noguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Seiho Kikuchi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Takahiro Maruyama
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Yusuke Araki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Yoshiki Morimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| |
Collapse
|
16
|
Biosynthesis of marine toxins. Curr Opin Chem Biol 2020; 59:119-129. [DOI: 10.1016/j.cbpa.2020.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
17
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Kudo Y, Hanifin CT, Kotaki Y, Yotsu-Yamashita M. Structures of N-Hydroxy-Type Tetrodotoxin Analogues and Bicyclic Guanidinium Compounds Found in Toxic Newts. JOURNAL OF NATURAL PRODUCTS 2020; 83:2706-2717. [PMID: 32896120 DOI: 10.1021/acs.jnatprod.0c00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biosynthesis of tetrodotoxin (TTX, 1), a potent neurotoxin widely distributed in marine and terrestrial metazoans, remains unresolved. A significant issue has been identifying intermediates and shunt products associated with the biosynthetic pathway of TTX. We investigated TTX biosynthesis by screening and identifying new TTX-related compounds from Cynops ensicauda popei and Taricha granulosa. Mass spectrometry (MS)-guided screening identified two new N-hydroxy TTX analogues in newts: 1-hydroxy-8-epiTTX (2) and 1-hydroxy-8-epi-5,11-dideoxyTTX (3, previously reported as 1-hydroxy-5,11-dideoxyTTX). We prepared a new analogue, 8-epi-5,11-dideoxyTTX (4), from 3 via N-OH reduction and confirmed the presence of 4 in T. granulosa using hydrophilic interaction liquid chromatography (HILIC)-LCMS. The presence of 8-epi-type TTX analogues in both Cynops and Taricha supports a branched biosynthetic pathway of terrestrial TTX, which produces 6- and 8-epimers. In addition, new bicyclic guanidinium compounds Tgr-238 (5) and Tgr-240 (6) were identified as putative shunt products of our proposed TTX biosynthesis pathway. A structural analysis of Cep-228A (7), another bicyclic compound, was performed using NMR. Based on the structures of 5-7 and their analogues, we propose a model of the shunt and metabolic pathways of the terrestrial TTX biosynthesis.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Charles T Hanifin
- Department of Biology, Utah State University, Uintah Basin Campus, 320 N. Aggie Boulevard (2000 W.), Vernal, Utah 84078, United States
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima 960-0181, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
19
|
Affiliation(s)
- Keigo Murakami
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tatsuya Toma
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
20
|
Murakami K, Toma T, Fukuyama T, Yokoshima S. Total Synthesis of Tetrodotoxin. Angew Chem Int Ed Engl 2020; 59:6253-6257. [DOI: 10.1002/anie.201916611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Keigo Murakami
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tatsuya Toma
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
21
|
Numano S, Kudo Y, Cho Y, Konoki K, Yotsu-Yamashita M. Temporal Variation of the Profile and Concentrations of Paralytic Shellfish Toxins and Tetrodotoxin in the Scallop, Patinopecten yessoensis, Cultured in a Bay of East Japan. Mar Drugs 2019; 17:E653. [PMID: 31766477 PMCID: PMC6950525 DOI: 10.3390/md17120653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Paralytic shellfish toxins (PSTs) are the major neurotoxic contaminants of edible bivalves in Japan. Tetrodotoxin (TTX) was recently detected in bivalve shellfish around the world, drawing widespread attention. In Japan, high levels of TTX were reported in the digestive gland of the scallop, Patinopecten yessoensis, in 1993; however, no new data have emerged since then. In this study, we simultaneously analyzed PSTs and TTX in scallops cultured in a bay of east Japan using hydrophilic interaction chromatography (HILIC)-MS/MS. These scallops were temporally collected from April to December 2017. The highest concentration of PSTs (182 µmol/kg, total congeners) in the hepatopancreas was detected in samples collected on May 23, lined to the cell density of the dinoflagellate, Alexandrium tamarense, in seawater around the scallops, whereas the highest concentration of TTX (421 nmol/kg) was detected in samples collected on August 22. Contrary to the previous report, temporal variation of the PSTs and TTX concentrations did not coincide. The highest concentration of TTX in the entire edible tissues was 7.3 µg/kg (23 nmol/kg) in samples obtained on August 22, which was lower than the European Food Safety Authority (EFSA)-proposed threshold, 44 µg TTX equivalents/kg shellfish meat. In addition, 12β-deoxygonyautoxin 3 was firstly identified in scallops.
Collapse
Affiliation(s)
| | | | | | | | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan; (S.N.); (Y.K.); (Y.C.); (K.K.)
| |
Collapse
|