1
|
Ghosh S, Khandelia T, Panigrahi P, Mandal R, Patel BK. Deciphering Co(III)-Catalyzed Oxidative C-H/C-H Annulation Towards Maleimide-Fused Imidazopyridine AEEgens. Chemistry 2025; 31:e202403576. [PMID: 39620910 DOI: 10.1002/chem.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/13/2024]
Abstract
A cobalt(III)-catalyzed dual C(sp2)-H/C(sp2)-H activation of 2-arylimidazopyridines and its annulation with N-substituted maleimides leads to polycyclic aromatic heterocycles. This sustainable oxidative annulation uses earth-abundant, less toxic, and cost-effective cobalt(III) catalyst that complement expensive 2nd and 3rd-row metals. This oxidative annulation features a broad substrate scope with very good functional group tolerance. These maleimide-fused imidazopyridines display strong fluorescence in the region of 527- 536 nm with a Stokes shift of 83-87 nm and possess an excited state lifetime of 14.6-16.1 ns. Interestingly, such luminescent compounds show aggregation-enhanced emission (AEE) behavior in the iPr-OH/hexane mixed solvent system. Furthermore, field emission scanning microscopy (FESEM) reveals their spherical nano-aggregates with an average diameter of ~216.8 nm. They can also be used as cellular-imaging and picric acid-sensing probes.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Tamanna Khandelia
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pritishree Panigrahi
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Raju Mandal
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bhisma K Patel
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
2
|
Banjare SK, Afreen S, Kong WY, Guo W, Nanda T, Das Adhikari GK, Preeyanka N, Tantillo DJ, Ravikumar PC. Cobalt-Catalyzed Deacylative Ipso-C-C Bond Functionalization: An Approach toward Indole-Acyloins and Its Photophysical Studies. J Org Chem 2024; 89:9187-9197. [PMID: 38904985 DOI: 10.1021/acs.joc.3c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Selective functionalization of the indole-C3-C bond with aromatic/heteroaromatic 1,2-diketones has been uncovered for the first time. Cobalt catalyst was found to be an effective catalyst for this unusual transformation. This ipso-C-C bond functionalization occurred in the presence of easily available weakly coordinating groups such as ketone and ester. One of the salient features of this methodology is the in situ generation of water from hexafluoro-2-propanol which acts as a reactant for the removal of the pivaloyl/ester group in a deacylative manner. The plausible mechanism has been supported by DFT calculations. Moreover, photophysical studies show the potential utility of indole-C3-acyloin and indolo-fused carbazole, which could be used in photovoltaic and optoelectronic application.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Saista Afreen
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Mahulkar PS, Joshi S, Banjare SK, Najiar LO, Ravikumar PC. Expanding the Scope of Alkynes in C-H Activation: Weak Chelation-Assisted Cobalt-Catalyzed Synthesis of Indole C(4)-Acrylophenone via C-O Bond Cleavage of Propargylic Ethers. Org Lett 2024; 26:2091-2096. [PMID: 38441887 DOI: 10.1021/acs.orglett.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Herein, we report the facile synthesis of indole C(4)-acrylophenone using a C-H bond activation strategy. For this conversion, an unsymmetrical alkyne (phenylethynyl ether) in the presence of cobalt(III)-catalyst works efficiently. In this process, alkyne gets oxidized in the presence of in situ generated water, which is the key step for this method, for which trifluoroethanol is the water source. The pivaloyl directing group chelates effectively to generate the cobaltacycle intermediate, which was detected through high-resolution mass spectrometry (HRMS). Also, the formation of bis(2,2,2-trifluoroethyl) ether has been confirmed and quantified using 19F NMR. In addition, the applicability of obtained indole C(4)-acrylophenone product has been demonstrated by performing the Nazarov cyclization and conjugate addition to the α,β-unsaturated ketone moiety.
Collapse
Affiliation(s)
- Pranav Shridhar Mahulkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sofaya Joshi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Niu RH, Zhang J, Zhao RY, Luo QJ, Li JH, Sun B. Cobalt(III)-Catalyzed Directed C-7 Selective C-H Alkynylation of Indolines with Bromoalkynes. Org Lett 2023; 25:5411-5415. [PMID: 37458331 DOI: 10.1021/acs.orglett.3c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A cobalt(III)-catalyzed directed C-7 alkynylation of indolines with easily accessible bromoalkynes has been developed. The reaction has a broad substrate scope with excellent yields and represents a powerful route to the synthesis of 7-alkynyl-substituted indolines. In addition, the reaction can be extended to the coupling of N-aryl 7-azaindoles, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Rui-Han Niu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ru-Yuan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Quan-Jian Luo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
5
|
Banjare SK, Saxena A, Nanda T, Prusty N, Joshi S, Ravikumar PC. Weak-Chelation Assisted Cobalt-Catalyzed C-H Bond Activation: An Approach Toward Regioselective Ethynylation of N-Aryl γ-Lactam. Org Lett 2023; 25:251-255. [PMID: 36580352 DOI: 10.1021/acs.orglett.2c04098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sustainable C-H bond ethynylation of N-aryl γ-lactam has been achieved in a highly regioselective manner. In this protocol, earth-abundant cobalt(III)-catalyst was found to be effective, triggering the C-H metalation using a weakly coordinating lactam group. Herein, the ortho-(sp2)-H ethynylation has been obtained regioselectively. The mechanistic studies reveal the non-involvement of the radical pathway for this conversion. However, the parallel kinetic isotope experiment suggests that the C-H bond activation is involved in the rate-determining step. In addition, the synthetic utility of ethynylated N-aryl γ-lactam has been demonstrated for many useful transformations.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Annapurna Saxena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sofaya Joshi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Liu M, Yan K, Wen J, Shang W, Sui X, Wang X. Ruthenium‐Catalyzed C7‐Formylmethylation or Sequential Acetalization of Indolines with Vinylene Carbonate in Different Solvents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| |
Collapse
|
8
|
Suzuki H, Kawai Y, Takemura Y, Matsuda T. Rhodium-catalysed decarbonylative C(sp 2)-H alkylation of indolines with alkyl carboxylic acids and carboxylic anhydrides under redox-neutral conditions. Org Biomol Chem 2022; 20:2808-2812. [PMID: 35318479 DOI: 10.1039/d2ob00249c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed a rhodium-catalysed decarbonylative C(sp2)-H alkylation method for indolines. This reaction facilitates the use of alkyl carboxylic acids and their anhydrides as a cheap, abundant and non-toxic alkyl source under redox-neutral conditions, featuring the introduction of a primary alkyl chain, which cannot be addressed by previous radical-mediated decarboxylative reaction. Through a mechanistic investigation, we revealed that an initially formed C-7 acylated indoline was transformed into the corresponding alkylated indoline via a decarbonylation process.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuya Kawai
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yosuke Takemura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
9
|
Xu T, He Q, Fan R. Synthesis of C7-Functionalized Indoles through an Aromaticity Destruction-Reconstruction Process. Org Lett 2022; 24:2665-2669. [PMID: 35377659 DOI: 10.1021/acs.orglett.2c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A process for the synthesis of C7-functionalized indoles using para-substituted 2-alkynylanilines as starting materials was reported. The process involves a dearomatization, an 1,2-addition by organic lithium or Grignard reagents, an aromatization-driven allylic rearrangement, and a cyclization. A variety of groups including alkyl, aryl, alkenyl, or alkynyl groups were selectively installed at the C7 site of indoles leading to the formation of 2,5,7-trisubstituted indoles.
Collapse
Affiliation(s)
- Tingxuan Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
10
|
Verma SK, Punji B. Manganese-Catalyzed C(sp2)-H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chem Asian J 2022; 17:e202200103. [PMID: 35289105 DOI: 10.1002/asia.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Selective C(sp 2 ) - H bond alkylation of indoline, carbazole and (2-pyridinyl)arenes with unactivated alkyl bromides is achieved using MnBr 2 catalyst in the absence of an external ligand. The alkylation uses a simple LiHMDS base and avoids the necessity of Grignard reagent, unlike other Mn-catalyzed C - H functionalization. This reaction proceeded either through a five- or a less-favored six-membered metallacycle, and tolerated diverse functionalities, including alkenyl, alkynyl, silyl, aryl ether, pyrrolyl, indolyl, carbazolyl and alkyl bearing fatty alcohol and polycyclic-steroid moieties. Alkylation follows a single electron transfer (SET) pathway involving 1e oxidative addition of alkyl bromide and a rate-limiting C-H metalation.
Collapse
Affiliation(s)
- Suryadev K Verma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr. Homi Bhabha Road, Pune, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
11
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
12
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Prusty N, Banjare SK, Mohanty SR, Nanda T, Yadav K, Ravikumar PC. Synthesis and Photophysical Study of Heteropolycyclic and Carbazole Motif: Nickel-Catalyzed Chelate-Assisted Cascade C-H Activations/Annulations. Org Lett 2021; 23:9041-9046. [PMID: 34788053 DOI: 10.1021/acs.orglett.1c03234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, nickel-catalyzed synthesis of polyarylcarbazole through sequential C-H bond activations has been described. Regioselective indole C2/C3 functionalization has been achieved in the presence of indole C7-H, which is quite challenging. In addition, this approach also gives easy access to building a heteropolycyclic motif through C6/C7 C-H functionalization of indoline. This methodology is not limited to aromatic internal alkynes as coupling partners; aliphatic alkynes have also shown good tolerance. Notably, during the optimization the catalytic enhancement with sodium iodide as an additive has been observed. We have also studied the photophysical properties of these highly conjugated molecules.
Collapse
Affiliation(s)
- Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Komal Yadav
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
14
|
Banjare SK, Nanda T, Pati BV, Adhikari GKD, Dutta J, Ravikumar PC. Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C. Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
15
|
Mandal R, Garai B, Sundararaju B. Cp*Co III-Catalyzed C(7)-H Bond Annulation of Indolines with Alkynes. J Org Chem 2021; 86:9407-9417. [PMID: 34213334 DOI: 10.1021/acs.joc.1c00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient protocol for the synthesis of biologically essential pyrroloquinolinones has been developed under Cp*CoIII catalysis, which involves a cascade reaction of C(7)-H alkenylation with alkynes followed by nucleophilic addition. A wide variety of internal alkynes including enyne, diyne, and ynamide and more challenging terminal alkynes were successfully employed for the annulation in good to excellent yield with high regioselectivity.
Collapse
Affiliation(s)
- Rajib Mandal
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Bholanath Garai
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Basker Sundararaju
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
16
|
Banjare SK, Nanda T, Pati BV, Biswal P, Ravikumar PC. O-Directed C-H functionalization via cobaltacycles: a sustainable approach for C-C and C-heteroatom bond formations. Chem Commun (Camb) 2021; 57:3630-3647. [PMID: 33870349 DOI: 10.1039/d0cc08199j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on providing comprehensive highlights of the recent advances in the field of cobalt-catalysed C-H functionalization and related synthetic concepts, relying on these through oxygen atom coordination. In recent years, 3d transition metal (Fe, Co, Cu & Ni) catalysed C-H functionalization reactions have received immense attention on account of its higher abundance and low cost, as compared to noble metals such as Ir, Rh, Ru and Pd. Among the first-row transition metals, cobalt is one of the extensively used metals for sustainable synthesis due to its unique reactivity towards the functionalization of inert C-H bonds. The functionalization of the inert C-H bond necessitates a proximal directing group. In this context, strongly coordinating nitrogen atom directed C-H functionalizations have been well explored. Nevertheless, strongly coordinating nitrogen-containing scaffolds, such as pyridine, pyrimidine, and 8-aminoquinoline, have to be installed and removed in a separate process. In contrast, C-H functionalizations through weakly coordinating atoms, such as oxygen, are largely underdeveloped. Since the oxygen atom is a part of many readily available functional groups, such as aldehydes, ketones, carboxylic acids, and esters, it could be used as directing groups for selective C-H functionalization reactions without any modification. Thus, the use of 3d transition metals, such as cobalt, along with weakly coordinating (oxygen) directing groups for C-H functionalization reactions are more sustainable, especially for the large-scale production of pharmaceuticals in industries. During the last decade, notable progress has been made using this concept. Nonetheless, almost all the reports are restricted to the formation of C-C and C-N bond. Therefore, there is a wide scope for developing this area for the formation of other bonds, such as C-X (halogens), C-B, C-S, and C-Se.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) HBNI, Bhubaneswar, Odisha 752050, India.
| | | | | | | | | |
Collapse
|
17
|
Jambu S, Shambhavi CN, Jeganmohan M. Aerobic Oxidative C-H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C-H Activation. Org Lett 2021; 23:2964-2970. [PMID: 33818094 DOI: 10.1021/acs.orglett.1c00646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Rh(III)-catalyzed aerobic oxidative C-H alkenylation of arylamides with unactivated alkenes is described. The olefination reaction was compatible with various substituted arylamides including primary, secondary, and tertiary as well as functionalized unactivated olefins. Meanwhile, ortho mono/bis-alkylated arylamides were synthesized in the reaction of arylamides with norbornene. In the alkenylation reaction, molecular oxygen along with organic acid was used to regenerate the active catalyst for the next catalytic cycle. A possible reaction mechanism involving C-H activation/insertion/β-hydride elimination followed by aerobic oxidation was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
- Subramanian Jambu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | | | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
18
|
Sahoo S, Pal S. Rapid Access to Benzimidazo[1,2- a]quinoline-Fused Isoxazoles via Pd(II)-Catalyzed Intramolecular Cross Dehydrogenative Coupling: Synthetic Versatility and Photophysical Studies. J Org Chem 2021; 86:4081-4097. [PMID: 33626283 DOI: 10.1021/acs.joc.0c02926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient and atom-economical palladium-catalyzed intramolecular cross dehydrogenative coupling (CDC) reaction has been developed for the construction of highly π-conjugated benzimidazo[1,2-a]quinoline-fused isoxazole scaffolds using molecular oxygen as sole oxidant. The approach portrayed wide substrate scope with good functional group tolerance and depicted a useful tool for the generation of fluorescence active compounds with high quantum yield. Synthetic versatility of the method via Fe-catalyzed reductive isoxazole ring cleavage toward pyridine, pyrimidine, pyrazole fused heteropolycyclic compounds has been showcase.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
19
|
Wang YY, Liu M, Dong L. Rh(iii)-Catalyzed multi-site-selective C–H bond functionalization: condition-controlled synthesis of diverse fused polycyclic benzimidazole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00104c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-site-selective C–H activation: Diverse novel fused polycyclic- and multi-substituted 2-oxyl naphthalene benzimidazole derivatives were selectively synthesized via Rh(iii)-catalyzed tandem C–H activation/cyclization.
Collapse
Affiliation(s)
- Ying-Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|
20
|
Pradhan S, De PB, Shah TA, Punniyamurthy T. Recent Advances in Metal‐catalyzed Alkylation, Alkenylation and Alkynylation of Indole/indoline Benzenoid Nucleus. Chem Asian J 2020; 15:4184-4198. [DOI: 10.1002/asia.202001159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Sourav Pradhan
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Pinaki Bhusan De
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Tariq A. Shah
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
- Govt. Srinagar Women's College Zakura Srinagar 190006 India
| | | |
Collapse
|