1
|
Wei Y, Wang G, Zhang Z, Li M, Ma N, Wu H, Zhang G. Cope Rearrangement of 1-Acyl-2-vinylcyclopropanes to Cyclohept-4-Enones. J Org Chem 2024. [PMID: 38166204 DOI: 10.1021/acs.joc.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cycloheptenones are widespread in natural products and bioactive molecules. An efficient and convenient NaH-mediated Cope Rearrangement of doubly activated vinylcyclopropanes is reported for the synthesis of cyclohepten-4-ones. These flexible intramolecular reactions were applicable to a wide range of substrates and could be performed on gram scale. The derivatization of the product leads to short and highly efficient synthesis of some useful functional molecules.
Collapse
Affiliation(s)
- Yinhe Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Gang Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Li CL, Yang Y, Zhou Y, Duan ZC, Yu ZX. Strain-Release-Controlled [4 + 2 + 1] Reaction of Cyclopropyl-Capped Diene-ynes/Diene-enes and Carbon Monoxide Catalyzed by Rhodium. J Am Chem Soc 2023; 145:5496-5505. [PMID: 36812021 DOI: 10.1021/jacs.3c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Achieving transition-metal-catalyzed reactions of diene-ynes/diene-enes and carbon monoxide (CO) to deliver [4 + 2 + 1] cycloadducts, rather than the kinetically favored [2 + 2 + 1] products, is challenging. Here, we report that this can be solved by adding a cyclopropyl (CP) cap to the diene moiety of the original substrates. The resulting CP-capped diene-ynes/diene-enes can react with CO under Rh catalysis to give [4 + 2 + 1] cycloadducts exclusively without forming [2 + 2 + 1] products. This reaction has a broad scope and can be used to synthesize useful 5/7 bicycles with a CP moiety. Of the same importance, the CP moiety in the [4 + 2 + 1] cycloadducts can act as an intermediate group for further transformations so that other challenging bicyclic 5/7 and tricyclic 5/7/5, 5/7/6, and 5/7/7 skeletons, some of which are widely found in natural products, can be accessed. The mechanism of this [4 + 2 + 1] reaction has been investigated by quantum chemical calculations, and the role of the CP group in avoiding the possible side [2 + 2 + 1] reaction has been identified, showing that the [4 + 2 + 1] is controlled by releasing the ring strain in the methylenecyclopropyl (MCP) group (about 7 kcal/mol) in the CP-capped dienes.
Collapse
Affiliation(s)
- Chen-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhao-Chen Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Yang Y, Tian ZY, Li CL, Yu ZX. Why [4 + 2 + 1] but Not [2 + 2 + 1]? Why Allenes? A Mechanistic Study of the Rhodium-Catalyzed [4 + 2 + 1] Cycloaddition of In Situ Generated Ene-Ene-Allenes and Carbon Monoxide. J Org Chem 2022; 87:10576-10591. [PMID: 35904504 DOI: 10.1021/acs.joc.2c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal-catalyzed [4 + 2 + 1] cycloaddition of in situ generated ene/yne-ene-allenes (from ene/yne-ene propargyl esters) and carbon monoxide (CO) gives the [4 + 2 + 1] cycloadducts rather than [2 + 2 + 1] cycloadducts. Investigating the mechanism of this [4 + 2 + 1] reaction and understanding why the [2 + 2 + 1] reaction does not compete and the role of the allene moiety in the substrates are important. This is also helpful to guide the future design of new [4 + 2 + 1] cycloadditions. Reported here are the kinetic and computed studies of the [4 + 2 + 1] reactions of ene-ene propargyl esters and CO. A quantum chemical study (at the DLPNO-CCSD(T)//BMK level) revealed that the [4 + 2 + 1] reaction includes four key steps, which are 1,3-acyloxy migration (rate-determining step), oxidative cyclization, CO migratory insertion, and reductive elimination. The allene moiety in the substrates is critical for providing additional coordination to the rhodium center in the final step of the catalytic cycle, which in turn favors the reductive elimination transition state in the [4 + 2 + 1] rather than in the [2 + 2 + 1] pathway. The CO insertion step in the [4 + 2 + 1] reaction, which could occur through either the UP (favored here) or DOWN CO insertion pathway, has also been deeply scrutinized, and some guidance from this analysis has been provided to help the future design of new [4 + 2 + 1] reactions. Quantum chemical calculations have also been applied to explain why [4 + 2] and [4 + 1] cycloadditions do not happen and how trienes as side products for some substrates are generated.
Collapse
Affiliation(s)
- Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chen-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Liu Z, Yang Y, Jiang X, Song Q, Zanoni G, Liu S, Bi X. Dearomative [4 + 3] cycloaddition of furans with vinyl- N-triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00256f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A practical dearomative [4 + 3] cycloaddition of furans with vinylcarbenes to access oxa-bridged seven-membered carbocycles, with complete and predictable stereoselectivity, is achieved by merging silver catalysis and vinyl-N-triftosylhydrazones.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinyu Jiang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Lv K, Bao X. Mechanistic insights into nickel- and gold-catalyzed diastereoselective [4 + 2 + 1] cycloadditions between dienynes and diazo compounds: a DFT study. Org Chem Front 2022. [DOI: 10.1039/d1qo01468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Density functional theory (DFT) calculations were performed to gain an in-depth mechanistic understanding of Ni(0)- and Au(i)-catalyzed diastereoselective [4 + 2 + 1] cycloadditions between dienynes and diazo compounds.
Collapse
Affiliation(s)
- Kang Lv
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- School of Engineering, Jining University, Qufu, Shandong 273155, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
6
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Biletskyi B, Colonna P, Masson K, Parrain JL, Commeiras L, Chouraqui G. Small rings in the bigger picture: ring expansion of three- and four-membered rings to access larger all-carbon cyclic systems. Chem Soc Rev 2021; 50:7513-7538. [PMID: 34002179 DOI: 10.1039/d0cs01396j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of the inherent ring strain of cyclobutane and cyclopropane derivatives allows a rapid build-up of molecular complexity. This review highlights the state-of-the-art of the ring expansions of three- and four-membered cycles and is organised by types of reactions with emphasis on the reaction mechanisms. Selected examples are discussed to illustrate the synthetic potential of this elegant synthetic tool.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Kévin Masson
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
8
|
Cui Q, Tian ZY, Yu ZX. Rhodium(I)-Catalyzed Three-Component [4+2+1] Cycloaddition of Two Vinylallenes and CO. Chemistry 2021; 27:5638-5641. [PMID: 33377219 DOI: 10.1002/chem.202005443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Transition metal-catalyzed [4+2+1] reactions of dienes (or diene derivatives such as vinylallenes), alkynes/alkenes, and CO (or carbenes) are expected to be the most straightforward approach to synthesize challenging seven-membered ring compounds, but so far only limited successes have been realized. Here, an unexpected three-component [4+2+1] reaction between two vinylallenes and CO was discovered to give highly functionalized tropone derivatives under mild conditions, where one vinylallene acts as a C4 synthon, the other vinylallene as a C2 synthon, and CO as a C1 synthon. It was proposed that this reaction occurred via oxidative cyclization of the diene part of one vinylallene molecule, followed by insertion of the terminal alkene part of the allene moiety in another vinylallene, into the Rh-C bond of five-membered rhodacycle. Then, CO insertion and reductive elimination gave the [4+2+1] cycloadduct. Further experimental exploration of why ene/yne-vinylallenes and CO gave monocyclic tropone derivatives instead of 6/7-bicyclic ring products were reported here.
Collapse
Affiliation(s)
- Qi Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
9
|
Armengol‐Relats H, Mato M, Echavarren AM. Assembly of Complex 1,4‐Cycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Non‐Acceptor Carbenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Helena Armengol‐Relats
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
10
|
Caillé J, Robiette R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Org Biomol Chem 2021; 19:5702-5724. [PMID: 34114583 DOI: 10.1039/d1ob00838b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stereocontrolled formation of medium-sized carbocycles is a major goal in modern organic chemistry due to their widespread occurrence in natural products and pharmaceutically active ingredients. One approach consists in the use of cycloaddition reactions which notably results in high selectivities and atom-economy. To this end, cyclopropanes are ideal substrates since they can provide readily functionalized three- or five-carbon synthons. Herein we report advances made in cycloaddition reactions of cyclopropanes towards the synthesis of medium-sized carbocycles via transition metal catalysis or Lewis acid catalysis.
Collapse
Affiliation(s)
- Julien Caillé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium. and Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR-CNRS 7182, Université Paris Est Créteil (UPEC), 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Armengol-Relats H, Mato M, Echavarren AM. Assembly of Complex 1,4-Cycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Non-Acceptor Carbenes. Angew Chem Int Ed Engl 2020; 60:1916-1922. [PMID: 33078893 PMCID: PMC7894532 DOI: 10.1002/anie.202012092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/23/2022]
Abstract
The formal (4+3) cycloaddition of 1,3-dienes with Rh(II) and Au(I) non-acceptor vinyl carbenes, generated from vinylcycloheptatrienes or alkoxyenynes, respectively, leads to 1,4-cycloheptadienes featuring complex and diverse substitution patterns, including natural dyctiopterene C' and a hydroxylated derivative of carota-1,4-diene. A complete mechanistic picture is presented, in which Au(I) and Rh(II) non-acceptor vinyl carbenes were shown to undergo a vinylcyclopropanation/Cope rearrangement or a direct (4+3) cycloaddition that takes place in a non-concerted manner.
Collapse
Affiliation(s)
- Helena Armengol-Relats
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|