1
|
Luo Q, Tian S, Qiang Q, Song F, Su W, He H, An Q, Li C. Copper-catalyzed C-C bond cleavage coupling with CN bond formation toward mild synthesis of lignin-based benzonitriles. J Environ Sci (China) 2025; 151:505-515. [PMID: 39481956 DOI: 10.1016/j.jes.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024]
Abstract
N-participated lignin depolymerization is of great importance for the transformation of waste lignin into value-added chemicals. The vast majority of developed strategies employ organic amines as nitrogen source, and considerable methods rely on excessive use of strong base, which suffers severe environmental issues. Herein, benzonitrile derivatives are synthesized from oxidized lignin β-O-4 model compounds in the presence of solid nitrogen source (NH4)2CO3 under mild, base-free conditions over commercially available copper catalyst. Mechanism studies suggest the transformation undergoes a one-pot, highly coupled cascade reaction path involving oxidative C-C bond cleavage and in-situ formation of CN bond. Of which, Cu(OAc)2 catalyzes the transfer of hydrogen from Cβ (Cβ-H) to Cα, leading to the cleavage of Cα-Cβ bonds to offer benzaldehyde derivative, this intermediate then reacts in-situ with (NH4)2CO3 to afford the targeted aromatic nitrile product. Tetrabutylammonium iodide (TBAI), acting as a promoter, plays a key role in breaking the Cα-Cβ bonds to form the intermediate benzaldehyde derivative. With this protocol, the feasibility of the production of value-added syringonitrile from birchwood lignin has been demonstrated. This transformation provides a sustainable approach to benzonitrile chemicals from renewable source of lignin.
Collapse
Affiliation(s)
- Qi Luo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Fei Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Haiyan He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
2
|
HajimohamadzadehTorkambour S, Nejad MJ, Pazoki F, Karimi F, Heydari A. Synthesis and characterization of a green and recyclable arginine-based palladium/CoFe 2O 4 nanomagnetic catalyst for efficient cyanation of aryl halides. RSC Adv 2024; 14:14139-14151. [PMID: 38737408 PMCID: PMC11085038 DOI: 10.1039/d4ra01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
The utilization of magnetic nanoparticles in the fields of science and technology has gained considerable popularity. Among their various applications, magnetic nanoparticles have been predominantly employed in catalytic processes due to their easy accessibility, recoverability, effective surface properties, thermal stability, and low cost. In this particular study, cyanuric chloride and arginine were utilized to synthesize an arginine-based oligomeric compound (ACT), which was supported on cobalt ferrite, resulting in a green catalyst with high activity and convenient recyclability for the cyanation reaction of aryl halides. The Pd/CoFe2O4@ACT nanomagnetic catalyst demonstrated excellent performance in the cyanation of various aryl iodides and bromides, yielding favorable reaction outcomes at a temperature of 90 °C within a duration of 3 hours. The synthesized nanoparticles were successfully characterized using various techniques, including FTIR, FE-SEM, EDX/MAP, XRD, TEM, TGA, BET, and ICP-OES. Moreover, the Pd/CoFe2O4@ACT catalyst exhibited remarkable catalytic activity, maintaining an 88% performance even after five consecutive runs. Analysis of the reused catalyst through SEM and TEM imaging confirmed that there were no significant changes in the morphology or dispersion of the particles. Ultimately, it was demonstrated that the Pd/CoFe2O4@ACT nanomagnetic catalyst outperformed numerous catalysts previously reported in the literature for the cyanation of aryl halides.
Collapse
Affiliation(s)
| | - Masoumeh Jadidi Nejad
- Department of Chemistry, Isfahan University of Technology P. O. Box 84156-83111 Isfahan Iran
| | - Farzane Pazoki
- Chemistry Department, Tarbiat Modares University P. O. Box 14155-4838 Tehran Iran
| | - Farzaneh Karimi
- Chemistry Department, Tarbiat Modares University P. O. Box 14155-4838 Tehran Iran
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University P. O. Box 14155-4838 Tehran Iran
| |
Collapse
|
3
|
Karimi F, Jadidi Nejad M, Salamatmanesh A, Heydari A. Magnetically separable triazine-based Cu(ii)-vitamin B 5 complex in nitromethane toward efficient heterogeneous cyanation reaction of aryl halides. RSC Adv 2023; 13:1412-1421. [PMID: 36686960 PMCID: PMC9813807 DOI: 10.1039/d2ra06104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
In the current study, a highly efficient heterogeneous copper catalyst has been developed by supporting copper acetate on a magnetically separable triazine-vitamin B5 system. After the successful characterization of the prepared nanoparticles by various techniques such as FT-IR, FE-SEM, EDX/MAP, XRD, TEM, TGA, VSM, and ICP-OES, the catalytic efficiency of them were evaluated in the cyanation reaction of aryl halides in the presence of nitromethane as a non-toxic and cost-effective cyanation source. The cyanation products were obtained in desirable yields. Notably, the magnetic nanocatalyst can be easily recovered and reused at least five times without a significant decrease in its performance.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Chemistry Department, Tarbiat Modares UniversityP.O. Box 14155-4838TehranIran+98-21-82883455+98-21-82883444
| | - Masoumeh Jadidi Nejad
- Chemistry Department, Tarbiat Modares UniversityP.O. Box 14155-4838TehranIran+98-21-82883455+98-21-82883444
| | - Arefe Salamatmanesh
- Chemistry Department, Tarbiat Modares UniversityP.O. Box 14155-4838TehranIran+98-21-82883455+98-21-82883444
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares UniversityP.O. Box 14155-4838TehranIran+98-21-82883455+98-21-82883444
| |
Collapse
|
4
|
Sharma R, Chaudhary S. Regiodivergent Cu-Promoted, AcOH-Switchable Distal Versus Proximal Direct Cyanation of 1-Aryl-1 H-indazoles and 2-Aryl-2 H-indazoles via Aerobic Oxidative C-H Bond Activation. J Org Chem 2022; 87:16188-16203. [PMID: 36417354 DOI: 10.1021/acs.joc.2c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A copper-promoted regiodivergent, AcOH-switchable, distal and proximal direct cyanation of N-aryl-(1H/2H)-indazoles via aerobic oxidative C(sp2)-H bond activation has been developed. The inclusion or exclusion of AcOH as an additive is the foremost cause for the positional switch in the C-CN bond formation method that results in (C-2')-cyanated 2-aryl-2H-indazoles 3a-j, (C-2')-cyanated 1-aryl-1H-indazoles 4a-j [distal], or C-3 cyanated 2-aryl-2H-indazoles 5a-i [proximal] products in good to excellent yields and showed various functional group tolerance. The cyanide (CN-) ion surrogate was generated via the unification of dimethylformamide and ammonium iodide (NH4I). The utilization of molecular oxygen (aerobic oxidative strategy) as a clean and safe oxidant is liable for generous value addition. The further pertinence of the developed protocol has been demonstrated by transforming the synthesized cyanated product into numerous other functional groups, which will, undoubtedly, accomplish utilization in the synthetic area of biologically important compounds and medicinal chemistry.
Collapse
Affiliation(s)
- Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.,Laboratory of Bioactive Heterocycles and Catalysis, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
5
|
Peng S, Yang L. Copper‐Catalyzed Cyanation of Aryl Iodides with Formamide as the Cyano Source. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sha Peng
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| | - Luo Yang
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| |
Collapse
|
6
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Zheng Y, Liu W, Ren Y, Guo Y, Tian X. Copper‐Catalyzed Cleavage of Aryl C(OH)−C Bonds to Access Aryl Nitriles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yinggang Guo
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
8
|
Liu W, Tang P, Zheng Y, Ren YL, Tian X, An W, Zheng X, Guo Y, Shen Z. Cu 2 O-Catalyzed Conversion of Benzyl Alcohols Into Aromatic Nitriles via the Complete Cleavage of the C≡N Triple Bond in the Cyanide Anion. Chem Asian J 2021; 16:3509-3513. [PMID: 34523819 DOI: 10.1002/asia.202100776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Nitrogen transfer from cyanide anion to an aldehyde is emerging as a promising method for the synthesis of aromatic nitriles. However, this method still suffers from a disadvantage that a use of stoichiometric Cu(II) or Cu(I) salts is required to enable the reaction. As we report herein, we overcame this drawback and developed a catalytic method for nitrogen transfer from cyanide anion to an alcohol via the complete cleavage of the C≡N triple bond using phen/Cu2 O as the catalyst. The present condition allowed a series of benzyl alcohols to be smoothly converted into aromatic nitriles in moderate to high yields. In addition, the present method could be extended to the conversion of cinnamic alcohol to 3-phenylacrylonitrile.
Collapse
Affiliation(s)
- Wenbo Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Peichen Tang
- School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P.R. China
| | - Yi Zheng
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Yun-Lai Ren
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Xinzhe Tian
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Wankai An
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Yinggang Guo
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Zhenpeng Shen
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| |
Collapse
|
9
|
Soumya PK, Vaishak TB, Saranya S, Anilkumar G. Recent advances in the rhodium‐catalyzed cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
10
|
Sarvi I, Zahedi E. Zinc Oxide/Graphene Oxide as a Robust Active Catalyst for Direct Oxidative Synthesis of Nitriles from Alcohols in Water. Catal Letters 2021. [DOI: 10.1007/s10562-021-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li S, Liang J, Liu X, Xian L, Du M. Iodine-mediated aminohalogenation-oxidation to synthesize 2-fluoroalkyl imidazole derivatives. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01360-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Liu SZ, Li J, Xue CG, Xu XT, Lei LS, Huo CY, Wang Z, Wang SH. Copper-promoted cyanation of aryl iodides with N,N-dimethyl aminomalononitrile. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Xiao J, Guo F, Li Y, Li F, Li Q, Tang ZL. Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions. J Org Chem 2021; 86:2028-2035. [PMID: 33397102 DOI: 10.1021/acs.joc.0c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fengzhe Guo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinfeng Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fangshao Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|