1
|
Wu SF, Wang ZY, Sun XW. Organocatalytic cyclization-rearrangement cascade reaction: asymmetric construction of γ-lactams. Org Biomol Chem 2025; 23:4197-4205. [PMID: 40177866 DOI: 10.1039/d5ob00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We report a chiral thiourea-catalyzed Michael/ring-reorganization cyclization of 3-methyleneoxindoles with N-(p-toluenesulfonyl)-α-amino ketones, facilitating the asymmetric synthesis of γ-lactams. This method efficiently generates a range of optically pure γ-lactams, in yields ranging from 60% to 86% and excellent stereoselectivity (up to 20 : 1 dr, >99% ee). The gram-scale experiments confirmed the scalability of the reaction without compromising the yield or stereoselectivity. Performed under mild conditions, this investigation showcases its potential applicability for synthesizing complex chiral γ-lactams with consecutive three chiral centers.
Collapse
Affiliation(s)
- Sheng-Feng Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Zhi-Yuan Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Xing-Wen Sun
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
López-Francés A, Serna-Burgos Z, Del Corte X, de Los Santos JM, de Cózar A, Vicario J. Exploring the Reactivity of Rigid 1-Azadienes Derived from Methylene γ-Lactams. Applications to the Stereoselective Synthesis of Spiro-γ-Lactams. J Org Chem 2024; 89:9502-9515. [PMID: 38901015 PMCID: PMC11232019 DOI: 10.1021/acs.joc.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A study on the reactivity of rigid 1-azadienes derived from methylene γ-lactams is reported. Through the functionalization of 1-amino α,β-unsaturated γ-lactam derivatives, easily available from a multicomponent reaction of amines, aldehydes, and pyruvates, it is possible to in situ generate rigid 1-azadienes locked by a γ-lactam core. The 4π-electron system of those rigid 1-azadienes can behave as both diene and dienophile species through a spontaneous cyclodimerization reaction or exclusively as dienes or dienophiles if they are trapped with imines or cyclopentadiene, respectively. The use of chiral rigid 1-azadienes as dienophiles in the cycloaddition reaction with cyclopentadiene leads to the formation of spiro-γ-lactams bearing four stereogenic centers in a highly stereospecific manner, reporting the first example of the use of methylene-γ-lactams in the synthesis of spirocycles.
Collapse
Affiliation(s)
- Adrián López-Francés
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU. Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Zuriñe Serna-Burgos
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU. Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Xabier Del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU. Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU. Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Abel de Cózar
- Department of Organic Chemistry I, Donostia International Physics Centre (DIPC), University of the Basque Country, UPV/EHU. Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU. Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
3
|
Liu D, Lu X, Chai Z, Yang H, Sun Y, Yu F. Progress in Construction of 2 H-Pyrrol-2-ones Skeleton. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Zhang YW, Jia YL, Wang D, Chen J, Liu FL, Cheng LQ, Yu X. NaIO4-Mediated Oxidative Cleavage of C–N Bond of Aza-Bridged Pyridoazepines to γLactams. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802210013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate. MOLBANK 2022. [DOI: 10.3390/m1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bisphosphonates are widely used in medicine and related areas, mainly for the treatment of bone diseases, such as osteoporosis. However, their synthesis is usually performed under harsh reaction conditions. In order to overcome this limitation, the present work illustrates a new synthetic route to access the title α-aminobisphosphonate in milder reaction conditions using α-phosphorylated imines as key intermediates.
Collapse
|
6
|
López-Francés A, del Corte X, Serna-Burgos Z, Martínez de Marigorta E, Palacios F, Vicario J. Exploring the Synthetic Potential of γ-Lactam Derivatives Obtained from a Multicomponent Reaction. Applications as Antiproliferative Agents. Molecules 2022; 27:molecules27113624. [PMID: 35684563 PMCID: PMC9182551 DOI: 10.3390/molecules27113624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
A study on the reactivity of 3-amino α,β-unsaturated γ-lactam derivatives obtained from a multicomponent reaction is presented. Key features of the substrates are the presence of an endocyclic α,β-unsaturated amide moiety and an enamine functionality. Following different synthetic protocols, the functionalization at three different positions of the lactam core is achieved. In the presence of a soft base, under thermodynamic conditions, the functionalization at C-4 takes place where the substrates behave as enamines, while the use of a strong base, under kinetic conditions, leads to the formation of C-5-functionalized γ-lactams, in the presence of ethyl glyoxalate, through a highly diastereoselective vinylogous aldol reaction. Moreover, the nucleophilic addition of organometallic species allows the functionalization at C-3, through the imine tautomer, affording γ-lactams bearing tetrasubstituted stereocenters, where the substrates act as imine electrophiles. Taking into account the advantage of the presence of a chiral stereocenter in C-5 substituted γ-lactams, further diastereoselective transformations are also explored, leading to novel bicyclic substrates holding a fused γ and δ-lactam skeleton. Remarkably, an example of a highly stereoselective formal [3+3] cycloaddition reaction of chiral γ-lactam substrates is reported for the synthesis of 1,4-dihidropyridines, where a non-covalent attractive interaction of a carbonyl group with an electron-deficient arene seems to drive the stereoselectivity of the reaction to the exclusive formation of the cis isomer. In order to unambiguously determine the substitution pattern resulting from the diverse reactions, an extensive characterization of the substrates is detailed through 2D NMR and/or X-ray experiments. Likewise, applications of the substrates as antiproliferative agents against lung and ovarian cancer cells are also described.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Palacios
- Correspondence: (F.P.); (J.V.); Tel.: +34-945013103 (F.P.); +34-945013087 (J.V.)
| | - Javier Vicario
- Correspondence: (F.P.); (J.V.); Tel.: +34-945013103 (F.P.); +34-945013087 (J.V.)
| |
Collapse
|
7
|
del Corte X, López-Francés A, Villate-Beitia I, Sainz-Ramos M, Martínez de Marigorta E, Palacios F, Alonso C, de los Santos JM, Pedraz JL, Vicario J. Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals (Basel) 2022; 15:ph15050511. [PMID: 35631337 PMCID: PMC9144317 DOI: 10.3390/ph15050511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
We report efficient synthetic methodologies for the preparation of 3-amino and 3-hydroxy 3-pyrrolin-2-ones (unsaturated γ-lactams) through a multicomponent reaction of amines, aldehydes and acetylene or pyruvate derivatives. The densely substituted γ-lactam substrates show in vitro cytotoxicity, inhibiting the growth of the carcinoma human tumor cell lines RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma) and A549 (carcinomic human alveolar basal epithelial cell). In view of the possibilities for the diversity of the substituents that offer a multicomponent, synthetic methodology, an extensive structure–activity profile is presented. In addition, the bioisosteric replacement of the flat ester group by a tetrahedral phosphonate or phosphine oxide moiety in γ-lactam substrates leads to increased growth inhibition activity. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - Adrián López-Francés
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - Ilia Villate-Beitia
- NanoBioCel Group, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (M.S.-R.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (M.S.-R.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - Concepción Alonso
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - Jesús M. de los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
| | - José Luis Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (M.S.-R.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Correspondence: (J.L.P.); (J.V.)
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (X.d.C.); (A.L.-F.); (E.M.d.M.); (F.P.); (C.A.); (J.M.d.l.S.)
- Correspondence: (J.L.P.); (J.V.)
| |
Collapse
|
8
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Khramtsova EE, Lystsova EA, Khokhlova EV, Dmitriev MV, Maslivets AN. Amination of 5-Spiro-Substituted 3-Hydroxy-1,5-dihydro-2 H-pyrrol-2-ones. Molecules 2021; 26:molecules26237179. [PMID: 34885757 PMCID: PMC8658906 DOI: 10.3390/molecules26237179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
The 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one motif is a valuable scaffold in drug discovery. The replacement of the 3-oxy fragment in 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones-based compounds with a 3-amino one (3-amino analogs of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, 3-amino-1,5-dihydro-2H-pyrrol-2-ones) can play a crucial role in their biological effect. Thus, approaches to 3-amino-1,5-dihydro-2H-pyrrol-2-ones are of significant interest. We developed an approach to 5-spiro-substituted 3-amino-1,5-dihydro-2H-pyrrol-2-ones that could not be obtained using previously reported approaches (reactions of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with amines). The developed approach is based on the thermal decomposition of 1,3-disubstituted urea derivatives of 5-spiro-substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, which were prepared via their reaction with carbodiimides.
Collapse
|
10
|
Corte X, López‐Francés A, Marigorta EM, Palacios F, Vicario J. Stereo‐ and Regioselective [3+3] Annulation Reaction Catalyzed by Ytterbium: Synthesis of Bicyclic 1,4‐Dihydropyridines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xabier Corte
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de Farmacia Universidad del País Vasco, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Adrián López‐Francés
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de Farmacia Universidad del País Vasco, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Edorta Martínez Marigorta
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de Farmacia Universidad del País Vasco, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de Farmacia Universidad del País Vasco, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Javier Vicario
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de Farmacia Universidad del País Vasco, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| |
Collapse
|
11
|
A Multicomponent Protocol for the Synthesis of Highly Functionalized γ-Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals (Basel) 2021; 14:ph14080782. [PMID: 34451879 PMCID: PMC8400033 DOI: 10.3390/ph14080782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An efficient synthetic methodology for the preparation of 3-amino 1,5-dihydro-2H-pyrrol-2-ones through a multicomponent reaction of amines, aldehydes, and pyruvate derivatives is reported. In addition, the densely substituted lactam substrates show in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines HEK293 (human embryonic kidney), MCF7 (human breast adenocarcinoma), HTB81 (human prostate carcinoma), HeLa (human epithelioid cervix carcinoma), RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma), and A549 (carcinomic human alveolar basal epithelial cell). Given the possibilities in the diversity of the substituents that offer the multicomponent synthetic methodology, an extensive structure-activity profile is presented. In addition, both enantiomers of phosphonate-derived γ-lactam have been synthesized and isolated and a study of the cytotoxic activity of the racemic substrate vs. its two enantiomers is also presented. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.
Collapse
|
12
|
Ye ZP, Hu YZ, Guan JP, Chen K, Liu F, Gao J, Xiao JA, Xiang HY, Chen XQ, Yang H. Photocatalytic Cyclization/Defluorination Domino Sequence to Access 3-Fluoro-1,5-dihydro-2 H-pyrrol-2-one Scaffold. Org Lett 2021; 23:4754-4758. [PMID: 34061549 DOI: 10.1021/acs.orglett.1c01477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein report an unprecedented photoinduced cyclization/defluorination domino process of N-allylbromodifluoroacetamide with cyclic secondary amines. Consequently, a wide array of valuable 3-fluoro-1,5-dihydro-2H-pyrrol-2-ones were facilely prepared from readily available starting materials under mild conditions. Preliminary mechanistic investigations suggest that a radical chain propagation and amine-promoted defluorination pathway are presumably involved in this transformation.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
13
|
Zhou K, Huang J, Wu J, Qiu G. An unexpected iron(II)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|