1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Fichez J, Dupommier D, Besset T. Direct Synthesis of Disubstituted Trifluoromethylthiolated Alkenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn the field of organofluorine chemistry, the quest for emergent fluorinated groups is in high demand. In particular, the scientific community has shown special interest in the SCF3 residue thanks to its unique properties. Indeed, over the last decade, the SCF3 group has become a pivotal fluorinated moiety, as demonstrated by several SCF3-containing compounds of interest, and, related to that, the steadily increasing number of synthetic methods that are available to access such molecules. In this Short Review, the main advances made for the synthesis of trifluoromethylthiolated disubstituted alkenes will be discussed and highlighted.1 Introduction2 Trifluoromethylthiolation of Prefunctionalized Alkenes3 Direct C–H Trifluoromethylthiolation of Alkenes4 Trifluoromethylthiolation of Miscellaneous Derivatives5 Conclusion
Collapse
|
4
|
Delost MD, Njardarson JT. Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF 3) Aziridine and Cyclopropane Structures. Org Lett 2021; 23:6121-6125. [PMID: 34292753 DOI: 10.1021/acs.orglett.1c02204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report mild new annulation approaches to trisubstituted trifluoromethylthiolated (SCF3) aziridines and cyclopropanes via Darzens inspired protocols. The products of these anionic annulations, rarely studied previously, possess attractive features rendering them valuable building blocks for synthesis platforms. In this study, trisubstituted acetophenone nucleophiles bearing SCF3 and bromine substituents in their α position were shown to undergo [2 + 1] annulations with vinyl ketones and tosyl-protected imines under mild reaction conditions.
Collapse
Affiliation(s)
- Michael D Delost
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Lu K, Xi X, Zhou T, Lei L, Li Q, Zhao X. Copper-catalysed direct difluoromethylselenolation of aryl boronic acids with Se-(difluoromethyl) 4-methylbenzenesulfonoselenoate. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Jin MY, Gu X, Deng M, Wang C, Wang JJ. Catalytic mutual multicomponent reaction: facile access to α-trifluoromethylthiolated ketones. Chem Commun (Camb) 2020; 56:10552-10555. [PMID: 32785314 DOI: 10.1039/d0cc04555a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicomponent catalytic reaction between ketones, Morita-Baylis-Hillman (MBH) carbonates and trifluoromethylthiolating agents is devised for straightforwardly accessing two products, α-trifluoromethylthiolated ketones and α-methylene β-amino esters in a one pot fashion. Particularly noteworthy is that the trifluoromethylthiolating reagent is employed as both the nitrogen and SCF3 source initiated by DABCO. This mild one pot strategy enjoys atom- and step-economic attractiveness, for direct introduction of an SCF3 group onto a variety of acyclic ketones, which have been considered as less effective and less developed substrates.
Collapse
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Xiaodong Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Min Deng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Chuancheng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. and Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|