1
|
Takatsuki M, Aoyama H, Arisawa M, Sako M. Brønsted acid-catalyzed synthesis of spirocyclobutanes via heteroannulation of vinyloxyphenylbicyclobutanes with water. Org Biomol Chem 2024; 22:4727-4731. [PMID: 38787695 DOI: 10.1039/d4ob00451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
We report a perchloric acid-catalyzed heteroannulation for the synthesis of spirocyclobutanes using vinyloxyphenylbicyclobutanes with water. This metal-free reaction yields high product outputs and is consistent with the formation of a cyclobutene intermediate originating from an isomerization of a bicyclobutane.
Collapse
Affiliation(s)
- Masaharu Takatsuki
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Chang MY, Ho CH, Chen HY. K 2CO 3-mediated annulation of 1,3-acetonedicarboxylates with 2-fluoro-1-nitroarenes: synthesis of indoles. Org Biomol Chem 2024; 22:4108-4122. [PMID: 38695833 DOI: 10.1039/d4ob00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The K2CO3-mediated one-pot reaction of 1,3-acetonedicarboxylates with 2 equiv. of substituted 2-fluoro-1-nitrobenzenes has been developed to synthesize various 2,3-dicarboxylate indoles via a tandem annulation pathway. In the effective reaction, one carbon-carbon double bond, one carbon-carbon single bond and one carbon-nitrogen single bond are formed under open-vessel conditions. DFT calculations are used to rationalize the plausible mechanisms.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chin-Huey Ho
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
4
|
García-Lacuna J, Alonso M, Domínguez G, Pérez Castells J. Study of the Pauson-Khand reaction in flow over alkynylphenyl vinyl ethers: towards the synthesis of tricyclic multisubstituted benzofurans. RSC Adv 2022; 12:7313-7317. [PMID: 35424686 PMCID: PMC8982164 DOI: 10.1039/d2ra01062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The use of flow methodology allows the use of alkynylphenyl vinyl ethers (benzo-fused 1,7 enynes) as substrates for the intramolecular Pauson-Khand reaction (PKr). Forced temperature and pressure conditions during a short reaction time minimize the substrate decomposition allowing the formation of the PK adduct. Substrates substituted at the internal position of the double bond and with internal triple bonds give better yields. The resulting products are cyclopentabenzofuranones present in diverse natural products and drugs that can be further functionalised.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Maialen Alonso
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Javier Pérez Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| |
Collapse
|
5
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Qiu J, Sako M, Tanaka T, Matsuzaki T, Takehara T, Suzuki T, Ohno S, Murai K, Arisawa M. Iridium-Catalyzed Isomerization/Cycloisomerization/Aromatization of N-Allyl- N-sulfonyl- o-(λ 1-silylethynyl)aniline Derivatives to Give Substituted Indole Derivatives. Org Lett 2021; 23:4284-4288. [PMID: 34032456 DOI: 10.1021/acs.orglett.1c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a one-iridium-catalyst system that transforms N-allyl-N-sulfonyl-2-(silylalkynyl)aniline derivatives, which are 1,7-enynes in which both multiple bonds have a heteroatom, to the corresponding substituted indole derivatives via isomerization/cycloisomerization/aromatization. This strategy provides an atom-economical and straightforward synthetic approach to a series of valuable indoles having vinyl and silylmethyl groups at the 2- and 3-positions.
Collapse
Affiliation(s)
- Jiawei Qiu
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Shohei Ohno
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Mutoh Y, Yamamoto K, Mohara Y, Saito S. (Z)-Selective Hydrosilylation and Hydroboration of Terminal Alkynes Enabled by Ruthenium Complexes with an N-Heterocyclic Carbene Ligand. CHEM REC 2021; 21:3429-3441. [PMID: 34028185 DOI: 10.1002/tcr.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/08/2022]
Abstract
Metal-catalyzed trans-1,2-hydrosilylations and hydroborations of terminal alkynes that generate synthetically valuable (Z)-alkenylsilanes and (Z)-alkenylboranes remain challenging due to the (E)-selective nature of the reactions and the formation of the thermodynamically unfavorable (Z)-isomer. The development of new, efficient catalytic systems for the (Z)-selective hydrosilylation and hydroboration of terminal alkynes is thus highly desirable from a fundamental perspective as it would deepen our understanding of the metal-catalyzed (Z)-selective hydrosilylation and hydroboration of terminal alkynes. This personal account describes our research for developing a ruthenium complex that can efficiently catalyze the hydrosilylation and hydroboration of terminal alkynes, and for exploring the factors controlling (Z)-selectivity of the reactions. Our effort into the activation of B-protected boronic acids, R-B(dan) (dan=naphthalene-1,8-diaminato), that was believed not to participate in Suzuki-Miyaura cross-coupling, is also discussed.
Collapse
Affiliation(s)
- Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kensuke Yamamoto
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusei Mohara
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
8
|
Ohno S, Arisawa M. Carbo- and Heterocycle Syntheses via Reactions between Two Multiple Bonds; Involving Heteroatom-Substituted Unsaturated Bonds. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Qiu J, Ohno S, Matsuzaki T, Suzuki T, Murai K, Arisawa M. Iridium-Catalyzed Intramolecular Cycloisomerization between Functionalized Alkyne with Aryl Vinyl Ether: Synthesis of 2-Vinyl-3-functionalized Methylbenzofurans. J Org Chem 2020; 85:10198-10205. [PMID: 32578432 DOI: 10.1021/acs.joc.0c00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed cycloisomerization between an aryl vinyl ether and a functionalized alkyne, such as silylalkyne, to give 2,3-disubstituted benzofuran derivatives using [IrCl(cod)]2, PCy3, and NaBArF4. This catalyst system not only catalyzes the above cycloisomerization but also isomerize a terminal olefin to give an aryl vinyl ether.
Collapse
Affiliation(s)
- Jiawei Qiu
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Shohei Ohno
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|