1
|
Wang HY, Liu ZY, Wang LX, Shao DY, Dong FY, Shen YB, Qiu B, Xiao J, An XD. Quinoline as an Intramolecular Hydride Shuttle in the Deoxygenative Coupling Reaction of Alcohol and the Inert Methyl C(sp 3)-H Bond. J Org Chem 2024; 89:18406-18411. [PMID: 39651762 DOI: 10.1021/acs.joc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reported herein is the C(sp3)-C(sp3) bond-forming at an unactivated C(sp3)-H bond via hydride transfer-initiated deoxygenative coupling reactions. Various polycyclic hydroquinolines were provided under metal-free conditions with excellent diastereoselectivity. Mechanistic study revealed that quinoline served as an intramolecular hydride shuttle to achieve the hydride abstraction and release in order. This methodology not only provides a practical strategy for direct deoxygenative coupling for the C(sp3)-C(sp3) bond-forming but also develops a new reaction type involving quinoline-enabled hydride transfer.
Collapse
Affiliation(s)
- Hui-Yun Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhen-Yuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long-Xue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Da-Ying Shao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Ying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Roy M, Mallick I, Mahapatra M, Srimani D. Substituent-Dependent, Switchable Synthesis of Nonaromatic and Aromatic Heterocyclic Sulfones Using Visible Light. Org Lett 2024; 26:9357-9362. [PMID: 39441842 DOI: 10.1021/acs.orglett.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this Letter, we described a visible-light-induced switchable synthesis of nonaromatic and aromatic sulfonyl heterocycles. The product selectivity between 2,5-dihydropyrrole and pyrrole can be tuned by altering the substituent on the N atom of 1,6-diyne. We highlight the intricacy and efficiency of this approach in constructing molecular frameworks under mild conditions with a high functional group tolerance. This study elucidates the mechanism underlying product selectivity, highlighting its potential as a compelling alternative to traditional synthetic techniques.
Collapse
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Itu Mallick
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Manami Mahapatra
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
3
|
Alvarez-Montoya A, Gillions JP, Winfrey L, Hawker RR, Singh K, Ortu F, Fu Y, Li Y, Pulis AP. B(C 6F 5) 3-Catalyzed Dehydrogenation of Pyrrolidines to Form Pyrroles. ACS Catal 2024; 14:4856-4864. [PMID: 38601781 PMCID: PMC11002826 DOI: 10.1021/acscatal.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Pyrroles are important N-heterocycles found in medicines and materials. The formation of pyrroles from widely accessible pyrrolidines is a potentially attractive strategy but is an underdeveloped approach due to the sensitivity of pyrroles to the oxidative conditions required to achieve such a transformation. Herein, we report a catalytic approach that employs commercially available B(C6F5)3 in an operationally simple procedure that allows pyrrolidines to serve as direct synthons for pyrroles. Mechanistic studies have revealed insights into borane-catalyzed dehydrogenative processes.
Collapse
Affiliation(s)
| | | | - Laura Winfrey
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Rebecca R. Hawker
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Kuldip Singh
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Fabrizio Ortu
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Yukang Fu
- School
of Chemical Engineering, Dalian University
of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | - Yang Li
- School
of Chemical Engineering, Dalian University
of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | | |
Collapse
|
4
|
Luo K, Zhao Y, Tang Z, Li W, Lin J, Jin Y. Visible-Light-Induced Dual C(sp 3)-H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Org Lett 2022; 24:6335-6340. [PMID: 35985018 DOI: 10.1021/acs.orglett.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the dual C(sp3)-H bond functionalization of a tertiary amine through hydride-transfer-induced dehydrogenation, followed by cycloaddition, using an easily preparable diazoester as a new type hydride-acceptor precursor under mild, redox-neutral conditions. With carbene as a hydrogen acceptor, this method was demonstrated by the preparation of a broad range of functionalized isoxazoldines in moderate to good yields.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
5
|
Pawar AP, Yadav J, Dolas AJ, Iype E, Rangan K, Kumar I. Catalyst-free direct regiospecific multicomponent synthesis of C3-functionalized pyrroles. Org Biomol Chem 2022; 20:5747-5758. [PMID: 35775588 DOI: 10.1039/d2ob00961g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An operationally simple catalyst-free protocol for the direct regiospecific synthesis of β-(C3)-substituted pyrroles has been developed. The enamine intermediate, in situ generated from succinaldehyde and a primary amine, was trapped with activated carbonyls before the Paal-Knorr reaction in a direct multicomponent "just-mix" fashion to furnish pyrroles with overall good yields. Several C3-substituted N-alkyl/aryl/H pyrroles have been produced under open-flask conditions with high atom economy and avoiding protection-deprotection chemistry.
Collapse
Affiliation(s)
- Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Secunderabad, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
6
|
Nakamura M, Yoshida K, Togo H. Novel preparation of 2,5-diarylpyrroles from aromatic nitriles with 3-arylpropylmagnesium bromides, 1,3-diiodo-5,5-dimethylhydantoin, and BuOK. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Pawar AP, Yadav J, Mir NA, Iype E, Rangan K, Anthal S, Kant R, Kumar I. Direct catalytic synthesis of β-(C3)-substituted pyrroles: a complementary addition to the Paal-Knorr reaction. Chem Commun (Camb) 2021; 57:251-254. [PMID: 33306070 DOI: 10.1039/d0cc06357f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of β-(C3)-functionalized pyrroles is a challenging task and requires a multistep protocol. An operationally simple direct catalytic synthesis of β-substituted pyrroles has been developed. This one-pot multicomponent method combined aqueous succinaldehyde as 1,4-dicarbonyl, primary amines, and isatins to access hydroxyl-oxindole β-tethered pyrroles. Direct synthesis of the β-substituted free NH-pyrrole is the central intensity of this work. DFT-calculations and preliminary mechanism investigation support the possible reaction pathway.
Collapse
Affiliation(s)
- Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
| | | | | | | | | | | | | | | |
Collapse
|