1
|
Zuo D, Xiao X, Ma X, Nie P, Liu L, Chen T. Highly efficient esterification of carboxylic acids with O-H nucleophiles through acid/iodide cooperative catalysis. Org Biomol Chem 2024. [PMID: 39016558 DOI: 10.1039/d4ob00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The esterification of carboxylic acids is an important reaction for preparing esters which find wide applications in various research fields. In this manuscript, we report an acid/iodide cooperative catalytic method which enables highly efficient esterification of carboxylic acids with a wide range of equivalent O-H nucleophiles including both alcohols and weak nucleophilic phenols. Under the reaction conditions, both aromatic and aliphatic carboxylic acids including those bearing functional groups work well, furnishing the corresponding esters in good to high yields. Moreover, this reaction is scalable and applicable to the modification of bioactive molecules. These results demonstrate the synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xiong Xiao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xinyue Ma
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Peng Nie
- Guizhou Institute for Food and Drug Control, 84 Shibei Road, Yunyan District, Guiyang City, Guizhou Province, 550000, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Zhuo SY, Ye JL, Zheng X. Copper-catalyzed room-temperature cross-dehydrogenative coupling of secondary amides with terminal alkynes: a chemoselective synthesis of ynamides. Org Biomol Chem 2024; 22:1299-1309. [PMID: 38259138 DOI: 10.1039/d3ob02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction between secondary amides and terminal alkynes has been developed. With the aid of ligands and 3 Å molecular sieves, ynamides can be efficiently synthesized at room temperature and conveniently scaled up. A legitimate mechanism involving nitrogen-centred radicals and copper trivalent intermediates has been proposed.
Collapse
Affiliation(s)
- Shuang-Yan Zhuo
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jian-Liang Ye
- Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Xiao Zheng
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Yadav MS, Jaiswal MK, Kumar S, Singh SK, Ansari FJ, Tiwari VK. One-pot expeditious synthesis of glycosylated esters through activation of carboxylic acids using trichloroacetonitrile. Carbohydr Res 2022; 521:108674. [PMID: 36126412 DOI: 10.1016/j.carres.2022.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Acetimidates, a valuable intermediate has been well explored as versatile synthon in a number of organic transformations particularly as suitable donors in glycosylation reactions. Herein, we explored acetimidates to furnish high-to-excellent yield of diverse glycosylated esters under one-pot mild reaction condition. The commercially available trichloroacetonitrile is implemented for the activation of carboxylic acid via in situ generation of trichloroacetimidate, which was subsequently attacked by sugar alcohols to deliver high-to-excellent yields of desired glycosylated esters. The devised method has some notable features such as metal-free condition, one-pot mild reaction condition, easy-handling, high-to-excellent yields, and broad substrate scope.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Han F, Liu G, Zhao X, Du S, Ding Y, Zhang Q, Deng H, Wang L, Chen Y. Total synthesis and stereochemical assignment of rakicidin F. Org Biomol Chem 2022; 20:4135-4140. [PMID: 35510627 DOI: 10.1039/d2ob00692h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis of rakicidin F was accomplished in 20 linear steps (0.68% overall yield), which enabled the configural determination of its six stereogenic centers as 2R, 15R, 16R, 17S, 19S, and 21S. The macrolactonization of the rakicidin linear precursor was investigated and the unsuccessful results might be attributed to the steric hindrance near C16-OH.
Collapse
Affiliation(s)
- Fangzhi Han
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, People's Republic of China
| | - Guangju Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xiuhe Zhao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, People's Republic of China
| | - Shunshun Du
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, People's Republic of China
| | - Yahui Ding
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Quan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, People's Republic of China
| | - Huiting Deng
- Nankai University, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, 300170, People's Republic of China
| | - Liang Wang
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Yue Chen
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
5
|
Wang C, Han C, Yang J, Zhang Z, Zhao Y, Zhao J. Ynamide-Mediated Thioamide and Primary Thioamide Syntheses. J Org Chem 2022; 87:5617-5629. [PMID: 35394769 DOI: 10.1021/acs.joc.1c03076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmentally friendly ynamide-mediated thioamidation of monothiocarboxylic acids with amines or ammonium hydroxide for the syntheses of thioamides and primary thioamides is described. Simple and mild reaction conditions enable the reaction to tolerate a wide variety of functional groups such as hydroxyl group, ester, tertiary amine, ketone, and amide moieties. Readily available NaSH served as the sulfur source, avoiding the use of toxic, expensive, and malodorous organic sulfur reagents and making this strategy environmentally friendly and practical. Importantly, the stereochemical integrity of α-chiral monothiocarboxylic acids was maintained during the activation step and subsequent aminolysis process, thus offering a racemization-free strategy for peptide C-terminal modification. Furthermore, a number of thioamide-modified drugs were prepared in good yields by using this protocol and the synthesized primary thioamides were transformed into backbone thiazolyl modified peptides.
Collapse
Affiliation(s)
- Changliu Wang
- College of Chemistry and Chemical Engineering & National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Chunyu Han
- Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Jinhua Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhenjia Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Junfeng Zhao
- College of Chemistry and Chemical Engineering & National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| |
Collapse
|
6
|
Nakano T, Liu Y, Wang XF, Tamiaki H. Synthesis of chlorophyll-a derivative inserting an ethynylene group between the carboxylic acid moiety and chlorin π-skeleton and its photosensitizing efficiency in dye-sensitized solar cell. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
|
8
|
Sahoo AK, Rangu P, Suresh K, Dutta S, Vangara S. Metal-Free Stereoselective Addition of Propiolic acids to Ynamides: A Concise Synthetic Route to Highly Substituted Ene-Diyne/Dienyne-( E)- N,O-Acetals. NEW J CHEM 2022. [DOI: 10.1039/d2nj01907h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straight forward and sustainable approach for 1,2-addition of propiolic acids to ynamide has led to bench stable sp2 (E)-enol-enamides of enediynes & dienynes. The reaction is chemo, regio, as...
Collapse
|
9
|
Wang X, Zhao Y, Yang J, Li Y, Luo Y, Xu M, Zhao J. Ynamide-Mediated Thioester Synthesis. J Org Chem 2021; 86:18265-18277. [PMID: 34874737 DOI: 10.1021/acs.joc.1c01949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel ynamide-mediated thioester synthesis strategy was developed. Importantly, no detectable racemization was observed for the thioesterifications of carboxylic acids containing an α-chiral center, enabling it to be useful for the synthesis of peptide thioester, which is the key component of native chemical ligation. It is worth mentioning that amino acid side chain functional groups such as -OH and indole -NH are compatible with the reaction conditions, rendering their protection unnecessary. Moreover, this method was also amenable to selenoesters.
Collapse
Affiliation(s)
- Xuewei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jinhua Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yanxi Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ying Luo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Mengyao Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Junfeng Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.,Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| |
Collapse
|
10
|
Ren JW, Tong MN, Zhao YF, Ni F. Synthesis of Dipeptide, Amide, and Ester without Racemization by Oxalyl Chloride and Catalytic Triphenylphosphine Oxide. Org Lett 2021; 23:7497-7502. [PMID: 34553596 DOI: 10.1021/acs.orglett.1c02614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient triphenylphosphine oxide-catalyzed amidation and esterification for the rapid synthesis of a series of dipeptides, amides, and esters is described. This reaction is applicable to challenging couplings of hindered carboxylic acids with weakly nucleophilic amines or alcohols, giving the products in good yields (67-90%) without racemization. This system employs the highly reactive intermediate Ph3PCl2 as the activator of the carboxylate in a catalytic manner and drives the reaction to completion in a short reaction time (less than 10 min).
Collapse
Affiliation(s)
- Ji-Wei Ren
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Meng-Nan Tong
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
11
|
Abstract
A benzyne-mediated esterification of carboxylic acids and alcohols under mild conditions has been realized, which is made possible via a selective nucleophilic addition of carboxylic acid to benzyne in the presence of alcohol. After a subsequent transesterification with alcohol, the corresponding esters can be produced efficiently. This benzyne-mediated protocol can be used on the modification of Ibuprofen, cholesterol, estradiol, and synthesis of nandrolone phenylpropionate. In addition, benzyne can also be used to promote lactonization and amidation reaction.
Collapse
Affiliation(s)
- Jinlong Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030.,College of Chemistry, Jilin University, Changchun, P. R. China, 130012
| |
Collapse
|
12
|
Yao C, Yang J, Lu X, Zhang S, Zhao J. Ynamide-Mediated Thionoester and Dithioester Syntheses. Org Lett 2020; 22:6628-6631. [DOI: 10.1021/acs.orglett.0c02402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chaochao Yao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jinhua Yang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaobiao Lu
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyu Zhang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
13
|
Sun F, Feng H, Huang L, Liu W. Lewis Acid‐Free Ynoate‐Mediated Chemoselective Reduction of Carboxylic Acids to Primary Alcohols. ChemistrySelect 2020. [DOI: 10.1002/slct.202002728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Feixiang Sun
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Huangdi Feng
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Liliang Huang
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Weiping Liu
- College of ChemistryChemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|