1
|
Patra N, Gupta A, Bharatam PV. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods. J Comput Chem 2025; 46:e27520. [PMID: 39476222 DOI: 10.1002/jcc.27520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025]
Abstract
Cyclic nitrenium ions containing five-membered and six-membered rings are available, however, the seven-membered cyclic nitrenium ions (azepinium ions) are rare. The chemistry of these species is related to their stability originating from the aromaticity due to 6π electrons. Very few theoretical and experimental studies have been conducted on the azepinium ions. Related clozapine and olanzapine cations (diazepinium ions) were observed during drug metabolism studies. In this work, quantum chemical analysis has been carried out to estimate the stability, aromaticity, and electrophilicity of several derivatives of azepinium ions. A few of the designed azepinium ions carry ΔES-T values in the range of 50 kcal/mol favoring singlet state; π donating groups at the 2nd position increase the singlet-triplet energy differences. Most of the substituents reduce the NICS(1) values compared to the parent system. Ring fusion with heterocyclic five-membered rings generally increases the aromaticity and the stability of the azepinium ion ring systems. The electrophilicity parameters estimated in terms of HIA, FIA, and ω values indicate that it is possible to fine-tune the chemical properties of azepinium ions with appropriate modulation.
Collapse
Affiliation(s)
- Nabajyoti Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
2
|
Du L, Wang J, Qiu Y, Liang R, Lu P, Chen X, Phillips DL, Winter AH. Generation and direct observation of a triplet arylnitrenium ion. Nat Commun 2022; 13:3458. [PMID: 35710806 PMCID: PMC9203820 DOI: 10.1038/s41467-022-31091-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Nitrenium ions are important reactive intermediates in both chemistry and biology. Although singlet nitrenium ions are well-characterized by direct methods, the triplet states of nitrenium ions have never been directly detected. Here, we find that the excited state of the photoprecursor partitions between heterolysis to generate the singlet nitrenium ion and intersystem crossing (ISC) followed by a spontaneous heterolysis process to generate the triplet p-iodophenylnitrenium ion (np). The triplet nitrenium ion undergoes ISC to generate the ground singlet state, which ultimately undergoes proton and electron transfer to generate a long-lived radical cation that further generates the reduced p-iodoaniline. Ab Initio calculations were performed to map out the potential energy surfaces to better understand the excited state reactivity channels show that an energetically-accessible singlet-triplet crossing lies along the N-N stretch coordinate and that the excited triplet state is unbound and spontaneously eliminates ammonia to generate the triplet nitrenium ion. These results give a clearer picture of the photophysical properties and reactivity of two different spin states of a phenylnitrenium ion and provide the first direct glimpse of a triplet nitrenium ion. Nitrenium ions are highly electrophilic reactive intermediates of formula R−N−R+, nitrogen analogue of carbenes. Here the authors report the detection of a triplet nitrenium ion using time-resolved spectroscopic methods and ab initio computations, allowing a glimpse at the properties and behavior of this important class of intermediates.
Collapse
Affiliation(s)
- Lili Du
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, P.R. China.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, 100875, Beijing, P.R. China
| | - Yunfan Qiu
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA
| | - Runhui Liang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Penglin Lu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, 100875, Beijing, P.R. China.
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China. .,Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA.
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA.
| |
Collapse
|