1
|
Mkrtchyan S, Purohit VB, Prajapati VD, Prajapati RV, Shalimov O, Sarfaraz S, Ayub K, Iaroshenko VO. Ruthenium Catalyzed Mechanochemical Transformation of Sulfonamide Group to Fluoro, Trifluoromethyl, and Trifluoromethoxy Functionalities. Chem Asian J 2025:e202500221. [PMID: 40202397 DOI: 10.1002/asia.202500221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
A convenient route for the mechanochemical synthesis of fluorinated aromatic compounds, that is, fluoro, trifluoromethyl, and trifluoromethoxy arenes, has been developed via pyrylium tetrafluoroborate (Pyry-BF4)-mediated desulfonamidative cross-coupling of primary sulfonamides under the synergy of a piezoelectric material BaTiO3, and Ru-catalysis. This is the first-ever report on the selective transformation of sulfonamide (SO2NH2) functionality to CF3/OCF3/F group in a single step under mechanochemical ball-milling conditions. Considering the importance of primary sulfonamides as the valuable pharmacophores, the present desulfonamidative cross-coupling approach could have potential to get synthetic utility in pharmaceutical industries for the late-stage functionalization of sulfonamide drugs and related active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banska Bystrica, 97401, Slovakia
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vishal B Purohit
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat, 388421, India
| | - Vaibhav D Prajapati
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, 388001, India
| | - Ronak V Prajapati
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Oleksandr Shalimov
- Heteroatom Chemistry Department, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, Kyiv, 02094, Ukraine
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banska Bystrica, 97401, Slovakia
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait, 32093, Kuwait
- School of Medicine, Georgian American University, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| |
Collapse
|
2
|
Gao Y, Wang M, Sun J, Zhao XJ, He Y. Electrochemical-induced solvent-tuned selective C(sp 3)-H bond activation towards the synthesis of C3-functionalized chromone derivatives. Chem Commun (Camb) 2024; 60:5050-5053. [PMID: 38634308 DOI: 10.1039/d4cc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An unprecedented solvent-tuned electrochemical method for selective C(sp3)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current. A plausible reaction mechanism has been proposed with the help of radical capture and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Jingxian Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
3
|
Hu JY, Xie ZB, Tang J, Le ZG, Zhu ZQ. Combining Enzyme and Photoredox Catalysis for the Construction of 3-Aminoalkyl Chromones. J Org Chem 2022; 87:14965-14969. [PMID: 36279475 DOI: 10.1021/acs.joc.2c01977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we reported a practical and efficient strategy combining photoredox and enzyme catalysis for the construction of 3-aminoalkyl chromones from o-hydroxyaryl enaminones and N-arylglycine esters. A variety of 3-aminoalkyl chromones were synthesized with good yields under mild conditions in one pot. This synthetic protocol consists of sequential enzymatic hydrolysis and photoredox decarboxylation of N-arylglycine esters, oxidation of aminoalkyl radicals, Mannich reaction, and intramolecular nucleophilic cyclization, which affords a convenient pathway for the preparation of various 3-substituted chromones.
Collapse
Affiliation(s)
- Jia-Yu Hu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| |
Collapse
|
4
|
Lai JR, Yin FD, Guo QS, Yuan F, Nian BF, Zhang M, Wu ZB, Zhang HB, Tang E. Silver-catalysed three-component reactions of alkynyl aryl ketones, element selenium, and boronic acids leading to 3-organoselenylchromones. Org Biomol Chem 2022; 20:5104-5114. [PMID: 35703142 DOI: 10.1039/d2ob00696k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag-catalysed three-component reaction of alkynyl aryl ketones bearing an ortho-methoxy group, element selenium, and arylboronic acid, providing a facile route to selenofunctionalized chromone products has been developed. This protocol features high efficiency and high regioselectivity, and the use of selenium powder as the selenium source. Mechanistic experiments indicated that the combined oxidative effect of (bis(trifluoroacetoxy)iodo)benzene and oxygen in the air pushes the catalytic redox cycle of the Ag catalyst and the phenylselenium trifluoroacetate formed in situ is the key intermediate of the PIFA-mediated 6-endo-electrophilic cyclization and selenofunctionalization reaction of alkynyl aryl ketones.
Collapse
Affiliation(s)
- Jin-Rong Lai
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fu-Dan Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qing-Song Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fei Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Bei-Fang Nian
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Ming Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhi-Bang Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Lu L, Zhao XJ, Dessie W, Xia X, Duan X, He J, Wang R, Liu Y, Wu C. Visible-light-promoted trifluoromethylselenolation of ortho-hydroxyarylenaminones. Org Biomol Chem 2022; 20:1754-1758. [DOI: 10.1039/d1ob02402g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of an efficient process that employs easy to handle and shelf-stable reagents for the synthesis of trifluoromethylselenylated heterocyclics remains a daunting challenge in organic synthesis. Herein, we report a...
Collapse
|
6
|
Mkrtchyan S, Iaroshenko VO. Mechanochemical synthesis of aromatic sulfonamides. Chem Commun (Camb) 2021; 57:11029-11032. [PMID: 34606527 DOI: 10.1039/d1cc03224k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A three-component Pd-catalysed aminosulfonylation reaction of K2S2O5 and amine with aryl bromides or aromatic carboxylic acids was developed. This strategy was developed to utilise mechanical energy and accommodate primary as well as secondary aliphatic and aromatic amines to provide a new shortcut to a wide range of sulfonamides. Studies on the scope and limitations of the reaction indicated its tolerance of a vast range of functional groups and many structural patterns. The reactions were scaled up to gram quantities.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland.
| | - Viktor O Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland. .,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovkého 40, 97401 Banska Bystrica, Slovakia
| |
Collapse
|
7
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
8
|
Mishra P, Sepay N, Panda N. Access to chromone-3-carboxylic acid via silver mediated coupling of 4-hydroxy coumarin and enol ester. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xiao W, Wang X, Liu R, Wu J. Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Mkrtchyan S, Iaroshenko VO. Arylation of ortho-Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones. J Org Chem 2021; 86:4896-4916. [PMID: 33721488 DOI: 10.1021/acs.joc.0c02294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we disclose three new methods for the straightforward and efficient synthesis of 3-arylchromones following the arylation of ortho-hydroxyarylenaminones by vast diversities of bench-stable and easy-to-use sulfonium salts and arenesulfonyl chlorides. Both developed methods, namely the light-mediated photoredox and electrophilic arylation, showed good efficiency, and are feasible for the preparation of 3-arylchromones in good-to-excellent yields. This work showcases the first described attempt where the sulfonium salts and arenesulfonyl chlorides were successfully utilized for the construction of the chromone heterocycle system.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland
| | - Viktor O Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland.,Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|