1
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
2
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
3
|
Patra S, Nandi M, Maurya MR, Sahu G, Mohapatra D, Reuter H, Dinda R. Ni-Unsymmetrical Salen Complex-Catalyzed One-Pot Multicomponent Reactions for Efficient Synthesis of Biologically Active 2-Amino-3-cyano-4 H-pyrans. ACS OMEGA 2024; 9:31910-31924. [PMID: 39072099 PMCID: PMC11270558 DOI: 10.1021/acsomega.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
In this report, four new Ni(II)-unsymmetrical salen complexes, [NiL1-4], were prepared by refluxing Ni(Ac)2·4H2O with unsymmetrical salen ligands, H2L1-4. All of the synthesized ligands and complexes were characterized by various physicochemical methods. Also, the solid-state structures of [NiL1], [NiL2], and [NiL4] were defined through single-crystal X-ray diffraction methods. The catalytic potential of [NiL1-4] was investigated by economic and environmentally friendly one-pot-three-component reactions (using reagent: 1,3-dicarbonyls, malononitrile, benzaldehyde, or its derivatives) for the synthesis of biologically active 2-amino-3-cyano-4H-pyran derivatives (total 16 derivatives). After optimization of the reaction conditions, this new synthetic protocol by taking Ni(II)-unsymmetrical salen complexes as catalysts shows excellent conversion with a maximum yield of up to 98% of the effective catalytic products within 1 h of reaction time. In addition, it was observed that the aromatic aldehyde containing an electron-withdrawing group as a ring substituent shows better conversion (up to 98%), and the electron-donating group substituent shows similar or less conversion compared to benzaldehyde under the optimized reaction conditions. From the comparison of results between all these Ni complexes, it was found that the efficiency of the catalytic performance follows the order [NiL1] > [NiL3] > [NiL2] > [NiL4]. A possible reaction pathway was predicted and established through UV-vis spectroscopy. Intermediate II proposed in the reaction pathway was also trapped and characterized through 1H and 13C NMR.
Collapse
Affiliation(s)
| | - Monojit Nandi
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Mannar R. Maurya
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Gurunath Sahu
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Deepika Mohapatra
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Hans Reuter
- Institute
of Chemistry of New Materials, University
of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Rupam Dinda
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
4
|
Rezvanian A, Khodadadi B, Tafreshi S, Shiri P. A versatile approach for one-pot synthesis of hybridized quinolines linked to fused N-containing heterocycles in water. Mol Divers 2024; 28:197-207. [PMID: 37695490 DOI: 10.1007/s11030-023-10719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Here, highly efficient one-pot protocols for the synthesis of structurally diverse fused N-containing heterocycles containing 2-chloroquinoline employing 1,1-bis(methylsulfanyl)-2-nitroethene, diamines, 2-chloroquinoline-3-carbaldehydes and dimedone/Meldrum's acid in green media in the absence of catalyst are reported. The current report proposes sustainable, simple, four-component and straightforward strategies for generating interesting N-containing heterocyclic compounds from a range of diamines and 2-chloroquinoline-3-carbaldehydes. The utilization of water as green media furnishes sustainability by preventing the usage of toxic solvent. A range of quinoline-containing aldehydes and diamines can be converted to two types of products with respect to using dimedone or Meldrum's acid via an inexpensive, one-pot and easy route.
Collapse
Affiliation(s)
- Atieh Rezvanian
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Behnoosh Khodadadi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Sepideh Tafreshi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Aboonajmi J, Mohammadi M, Panahi F, Aberi M, Sharghi H. One-pot, three-component, iron-catalyzed synthesis of benzimidazoles via domino C-N bond formation. RSC Adv 2023; 13:24789-24794. [PMID: 37608969 PMCID: PMC10440634 DOI: 10.1039/d3ra04450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
An efficient one-pot, three-component process for the synthesis of benzimidazole derivatives using a catalytic amount of Fe(iii) porphyrin has been developed. The reaction proceeds via domino C-N bond formation and cyclization reactions of benzo-1,2-quinone, aldehydes and ammonium acetate as a nitrogen source to selectively produce benzimidazole. A number of benzimidazole derivatives have been synthesized using this method in high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| | - Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU) Shiraz Branch Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| |
Collapse
|
6
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
7
|
Majedi M, Safaei E, Gyergyek S. New iron(iii) complex of bis-bidentate-anchored diacyl resorcinol on a Fe 3O 4 nanomagnet: C-H bond oxygenation, oxidative cleavage of alkenes and benzoxazole synthesis. RSC Adv 2023; 13:4040-4055. [PMID: 36756566 PMCID: PMC9890640 DOI: 10.1039/d2ra06818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
We have synthesized a novel, bis-bidentate, covalently anchored, 4,6-diacetyl resorcinol (DAR) ligand on silica-coated magnetic Fe3O4 nanoparticles and the corresponding bi-metallic iron(iii) complex (Fe3O4@SiO2-APTESFe2LDAR). Both the chemical nature and the structure of the homogeneously heterogenized catalyst were investigated using physico-chemical techniques. The results obtained by XPS, XRD, FT-IR, TGA, VSM, SEM, TEM, EDX, ICP and AAS revealed a magnetic core, a silica layer and the grafting of a binuclear iron complex on the Fe3O4@SiO2-APTES, as well as its thermodynamic stability. Despite many reports of metal complexes on different supports, there are no reports of anchored, bi-metallic complexes. To the best of our knowledge, this is the first report of a bi-active site catalyst covalently attached to a support. This study focuses on the catalytic activity of an as-synthesized, bi-active site catalyst for C-H bond oxygenation, the oxidative cleavage of alkenes, and the multicomponent, one-pot synthesis of benzoxazole derivatives with excellent yields from readily available starting materials. Our results indicated high conversion rates and selectivity under mild reaction conditions and simple separation using a magnetic field. The leaching and recyclability tests of the catalyst were investigated for the above processes, which indicated that all the reactions proceed via a heterogeneous pathway and that the catalyst is recyclable without any tangible loss in catalytic activity for at least 8, 5 and 5 cycles for C-H bond oxygenation, C[double bond, length as m-dash]C bond cleavage and benzoxazole synthesis, respectively.
Collapse
Affiliation(s)
- Mona Majedi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Sašo Gyergyek
- Department for Synthesis of Materials, Jožef Stefan InstituteJamova cesta 391000 LjubljanaSlovenia
| |
Collapse
|
8
|
Malik A, Singh UP. Immobilized Cu‐Schiff Base Complex on MCM‐41as Catalyst in the Synthesis of Benzimidazole Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arti Malik
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| | - Udai P. Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| |
Collapse
|
9
|
Dou L, Tong L, Yan YB, Deng YH, Dong WK. EXPERIMENTAL AND THEORETICAL STUDY OF A SANDWICH-LIKE PHENOXO-BRIDGED HETEROBIMETALLIC ZINC(II)–MANGANESE(III) 3-MeOSALPHEN COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gendron D. Vanillin: A Promising Biosourced Building Block for the Preparation of Various Heterocycles. Front Chem 2022; 10:949355. [PMID: 35873060 PMCID: PMC9300922 DOI: 10.3389/fchem.2022.949355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
The preparation of heterocyclic compounds often involves the use of petroleum-based or non-renewable sources. Considering the actual societal and environmental awareness towards sustainable chemistry, new and green sources of organic carbon are sought. In this regard, vanillin is a molecular building block that can be obtained from the depolymerization of lignin. Due to its different functional groups (hydroxyl, aldehyde, and methoxy) vanillin can undergo a variety of reactions leading to various heterocycles such as pyrimidines, quinoxalines, imidazoles or thiazoles to name a few. This mini-review will focus on the preparation of accessible heterocycles building blocks from the vanillin moiety in regard to the medicinal, pharmaceutical, and material fields.
Collapse
|
11
|
Shichijo K, Watanabe M, Hisaeda Y, Shimakoshi H. Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ions Modified TiO 2 and B 12 Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keita Shichijo
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Midori Watanabe
- Center of Advanced Instrumental Analysis, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Hisashi Shimakoshi
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| |
Collapse
|
12
|
Thakur A, Verma M, Bharti R, Sharma R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Tan Y, Han YP, Zhang Y, Zhang HY, Zhao J, Yang SD. Primary Amination of Ar2P(O)–H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. J Org Chem 2022; 87:3254-3264. [DOI: 10.1021/acs.joc.1c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Aboonajmi J, Panahi F, Hosseini MA, Aberi M, Sharghi H. Iodine-catalyzed synthesis of benzoxazoles using catechols, ammonium acetate, and alkenes/alkynes/ketones via C–C and C–O bond cleavage. RSC Adv 2022; 12:20968-20972. [PMID: 35919129 PMCID: PMC9302334 DOI: 10.1039/d2ra03340b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient metal-free synthesis strategy of benzoxazoles was developed via coupling catechols, ammonium acetate, and alkenes/alkynes/ketones. The developed methodology represents an operationally simple, one-pot and large-scale procedure for the preparation of benzoxazole derivatives using molecular iodine as the catalyst. A metal-free one-pot multi-component method for the efficient synthesis of 2-aryl benzoxazoles via coupling of catechols, ammonium acetate and alkenes/alkynes/ketones using an I2–DMSO catalyst system is illustrated.![]()
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mina Aali Hosseini
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU), Shiraz Branch, Shiraz, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
15
|
Torabi M, Zolfigol MA, Yarie M, Gu Y. Application of ammonium acetate as a dual rule reagent-catalyst in synthesis of new symmetrical terpyridines. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Sharghi H, Mashhadi E, Aberi M, Aboonajmi J. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes,
o
‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO
2
as a nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Elahe Mashhadi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Mahdi Aberi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| |
Collapse
|
17
|
Aboonajmi J, Panahi F, Sharghi H. One-Pot Multicomponent Coupling Reaction of Catechols, Benzyl Alcohols/Benzyl Methyl Ethers, and Ammonium Acetate toward Synthesis of Benzoxazoles. ACS OMEGA 2021; 6:22395-22399. [PMID: 34497928 PMCID: PMC8412954 DOI: 10.1021/acsomega.1c03207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The multicomponent coupling reaction of catechol, ammonium acetate, and benzyl alcohol/benzyl methyl ether in the presence of a Fe(III) catalyst precursor afforded benzoxazole derivatives in good to excellent yields. The notable features of this protocol are abundant availability of the catalyst system, large-scale synthesis, high diversity, and high yields of products.
Collapse
|
18
|
Wu S, Zhou D, Geng F, Dong J, Su L, Zhou Y, Yin S. Metal‐Free Oxidative Condensation of Catechols, Aldehydes and NH
4
OAc towards Benzoxazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaofeng Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Dan Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Furong Geng
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Jianyu Dong
- Department of Educational Science Hunan First Normal University Changsha 410205 People's Republic of China
| | - Lebin Su
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Shuang‐Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
19
|
Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2
H
‐Indazoles and 5‐Substituted 1
H
‐Tetrazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dariush Khalili
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Roya Evazi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Abdollah Neshat
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| |
Collapse
|
20
|
Aboonajmi J, Sharghi H, Aberi M, Shiri P. Consecutive Oxidation/Condensation/Cyclization/Aromatization Sequences Catalyzed by Nanostructured Iron(III)‐Porphyrin Complex towards Benzoxazole Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Pezhman Shiri
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| |
Collapse
|