1
|
Wang Y, Chen W, Lai Y, Duan A. Activation Model and Origins of Selectivity for Chiral Phosphoric Acid Catalyzed Diradical Reactions. J Am Chem Soc 2023; 145:23527-23532. [PMID: 37788159 DOI: 10.1021/jacs.3c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To develop new radical synthesis strategies, a profound understanding of the electronic transfer mechanism is critical. An activation model called relayed proton-coupled electron transfer (relayed-PCET) was developed and investigated for chiral phosphoric acid-catalyzed diradical reactions by density functional theory (DFT). The driving force of electron transfer from the nucleophile to the electrophile is the proton transfer that occurs via the chiral phosphoric acid (CPA) catalyst to the electrophile. Moreover, the origins of the selectivity can be explained by distortion of the catalyst, favorable hydrogen bonding, and strong interactions of the substrates with substituents of the CPAs.
Collapse
Affiliation(s)
- Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weichi Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yilei Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Liu Y, Feng A, Zhu R, Zhang D. New insights into the mechanism of synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes: a DFT study. Chem Sci 2023; 14:4580-4588. [PMID: 37152251 PMCID: PMC10155915 DOI: 10.1039/d3sc00002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
This work presents a DFT-based computational study to understand the mechanism, and regio- and enantioselectivities in the synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes with alkyl redox-active esters. The calculated results show an unprecedented copper catalytic mechanism, where the reaction follows a catalytic cycle involving CuI-only catalysis, instead of a Cu(i)/Cu(ii)/Cu(iii)/Cu(i) cycle as proposed in the experimental study. Moreover, it is found that the critical step involves the reaction of the cyanocopper(i) species with an allyl cation rather than the cyanocopper(ii) species reacting with an allyl radical as proposed in the experiment, and that the photocatalyst is regenerated via single electron transfer from the allyl radical to the oxidized photocatalyst. In the newly proposed photoredox/copper(i) catalysis, the reaction consists of four stages: (i) generation of the copper(i) active catalyst, (ii) formation of an allyl radical with oxidative quenching of the photoexcited species, (iii) generation of an allylcopper complex accompanied by the regeneration of the photocatalyst, and (iv) formation of the allyl cyanide product with the regeneration of the copper(i) active catalyst. The cyanation of the allyl cation is calculated to be the regio- and enantioselectivity-determining step. The excellent regio- and stereoselectivities are attributed to the favorable CH-π interaction between the substrate and catalyst as well as the small distortion of the substrate.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Rongxiu Zhu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| |
Collapse
|
3
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Takagi R, Tanimoto T. Enantioselective [2 + 2] photocycloaddition of quinolone using a C1-symmetric chiral phosphoric acid as a visible-light photocatalyst. Org Biomol Chem 2022; 20:3940-3947. [PMID: 35506886 DOI: 10.1039/d2ob00607c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enantioselective intra- and intermolecular [2 + 2] photocycloaddition of quinolone using a C1-symmetric chiral phosphoric acid as a visible-light photocatalyst is developed. The thioxanthone chromophore on phosphoric acid plays an important role in both phototransformation and enantioselectivity.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Takaaki Tanimoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
5
|
Liang D, Chen JR, Tan LP, He ZW, Xiao WJ. Catalytic Asymmetric Construction of Axially and Centrally Chiral Heterobiaryls by Minisci Reaction. J Am Chem Soc 2022; 144:6040-6049. [PMID: 35322666 DOI: 10.1021/jacs.2c01116] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Axially chiral biaryls and heterobiaryls constitute the most represented subclass of atropisomers with prevalence in natural products, bioactive compounds, privileged chiral ligand/catalysts, and optically pure materials. Despite many ionic protocols for their construction, radical-based variants represent another highly desirable and intriguing strategy but are far less developed. Moreover, efficient synthesis of axially chiral heterobiaryl molecules, especially ones having multiple heteroatoms and other types of chiral elements, through radical routes remains extremely limited. We herein disclose the first catalytic asymmetric, metal-free construction of axially and centrally chiral heterobiaryls by Minisci reaction of 5-arylpyrimidines and α-amino acid-derived redox-active esters. This is enabled by the use of 4CzIPN as an organic photoredox catalyst in conjunction with a chiral phosphoric acid catalyst. The reaction achieved a variety of interesting 5-arylpyrimidines featuring the union of an axially chiral heterobiaryl and a centrally chiral α-branched amine with generally excellent regio-, diastereo-, and enantioselectivity (up to 82% yield; >19:1 dr; >99% ee). This finding also builds up a new platform for the development of desymmetrization methods via radical-involved atroposelective functionalization at heteroarene of prochiral heterobiaryls.
Collapse
Affiliation(s)
- Dong Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Li-Ping Tan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zi-Wei He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Colgan AC, Phipps RJ. Catalytic Enantioselective Minisci Reaction. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9958-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Ermanis K, Colgan AC, Proctor RSJ, Hadrys BW, Phipps RJ, Goodman JM. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J Am Chem Soc 2020; 142:21091-21101. [PMID: 33252228 PMCID: PMC7747223 DOI: 10.1021/jacs.0c09668] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
Minisci reaction is one of the most valuable methods for directly
functionalizing basic heteroarenes to form carbon–carbon bonds.
Use of prochiral, heteroatom-substituted radicals results in stereocenters
being formed adjacent to the heteroaromatic system, generating motifs
which are valuable in medicinal chemistry and chiral ligand design.
Recently a highly enantioselective and regioselective protocol for
the Minisci reaction was developed, using chiral phosphoric acid catalysis.
However, the precise mechanism by which this process operated and
the origin of selectivity remained unclear, making it challenging
to develop the reaction more generally. Herein we report further experimental
mechanistic studies which feed into detailed DFT calculations that
probe the precise nature of the stereochemistry-determining step.
Computational and experimental evidence together support Curtin–Hammett
control in this reaction, with initial radical addition being quick
and reversible, and enantioselectivity being achieved in the subsequent
slower, irreversible deprotonation. A detailed survey via DFT calculations
assessed a number of different possibilities for selectivity-determining
deprotonation of the radical cation intermediate. Computations point
to a clear preference for an initially unexpected mode of internal
deprotonation enacted by the amide group, which is a crucial structural
feature of the radical precursor, with the assistance of the associated
chiral phosphate. This unconventional stereodetermining step underpins
the high enantioselectivities and regioselectivities observed. The
mechanistic model was further validated by applying it to a test set
of substrates possessing varied structural features.
Collapse
Affiliation(s)
- Kristaps Ermanis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Avene C Colgan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Rupert S J Proctor
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Barbara W Hadrys
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan M Goodman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Takagi R, Tabuchi C. Enantioselective intramolecular [2 + 2] photocycloaddition using phosphoric acid as a chiral template. Org Biomol Chem 2020; 18:9261-9267. [PMID: 33150919 DOI: 10.1039/d0ob02054k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective intramolecular [2 + 2] photocycloaddition of 4-bishomoally-2-quinolone (quinolinone) using phosphoric acid as a chiral template has been developed. Mechanistic studies using several NMR measurement techniques and density functional theory (DFT) calculations indicate that π-π interactions between the phenyl ring on phosphoric acid and quinolinone play important roles in the enantioselectivity.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Chihiro Tabuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|