1
|
Apostol TV, Chifiriuc MC, Draghici C, Socea LI, Marutescu LG, Olaru OT, Nitulescu GM, Pahontu EM, Saramet G, Barbuceanu SF. Synthesis, In Silico and In Vitro Evaluation of Antimicrobial and Toxicity Features of New 4-[(4-Chlorophenyl)sulfonyl]benzoic Acid Derivatives. Molecules 2021; 26:molecules26165107. [PMID: 34443693 PMCID: PMC8399259 DOI: 10.3390/molecules26165107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.
Collapse
Affiliation(s)
- Theodora-Venera Apostol
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
| | - Constantin Draghici
- “Costin D. Nenițescu” Centre of Organic Chemistry, Romanian Academy, 202 B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Laura-Ileana Socea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
- Correspondence: (L.G.M.); (O.T.O.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
- Correspondence: (L.G.M.); (O.T.O.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Gabriel Saramet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| |
Collapse
|
2
|
Wang J, Li D, Li J, Zhu Q. Advances in palladium-catalysed imidoylative cyclization of functionalized isocyanides for the construction of N-heterocycles. Org Biomol Chem 2021; 19:6730-6745. [PMID: 34259697 DOI: 10.1039/d1ob00864a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalysed isocyanide insertion reactions have witnessed great progress in recent years. In particular, imidoylative cyclization of functionalized isocyanides was successfully developed by taking advantage of the adjustable substituents on the isocyano group, opening a new avenue to access a variety of nitrogen-containing heterocycles. In this review article, we summarize the advances of functionalized isocyanide insertion reactions and highlight the breakthroughs of enantioselective palladium catalysed imidoylation reactions by using this strategy. Additionally, copper-catalysed cyclization reactions of functionalized isocyanides are briefly discussed.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|