1
|
Cao Z, Niu Y, Jiang X, Li L, Wang N, Huang N, Yao H. Cobalt-Catalyzed versus Base-Promoted Skeletal- and Stereodivergent Synthesis of Bicyclic α- C-, β- O-, and α- O-Glycosides. Org Lett 2025. [PMID: 40340430 DOI: 10.1021/acs.orglett.5c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
A stereodivergent synthesis of bicyclic α-C-, β-O-, and α-O-glycosides is achieved with nonprecious Co(dpm)3, K2CO3, and DBU, respectively. Cobalt-catalyzed decarboxylative allylation of 2,3-unsaturated 4-keto glycosyl carbonates with 1,3-diketones delivers α-C-glycosides in good yields with exclusive chemo- and regiocontrol and excellent diastereoselectivity (>20:1 dr). K2CO3 enables β-O-glycosides via a cascaded intermolecular Michael addition/SN2-like cyclization, whereas DBU promotes further C5 epimerization to give α-O-glycosides. Mechanistic studies (deuterium labeling and intermediate capturing) validate the pathways. Gram-scale synthesis and late-stage functionalization of pharmaceuticals demonstrate practicality.
Collapse
Affiliation(s)
- Zhen Cao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yujie Niu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xingxing Jiang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Linxuan Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Wang Y, Cheng Y, Tao X, Yang W, Zhou Z, Dai Y. Palladium-Catalyzed Stereospecific Glycosylation Enables Divergent Synthesis of N-O-Linked Glycosides. Org Lett 2025; 27:915-921. [PMID: 39787251 DOI: 10.1021/acs.orglett.4c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We present a versatile palladium-catalyzed glycosylation platform that enables facile access to structurally diverse N-O-linked glycosides with constantly excellent regio- and stereoselectivities. Importantly, this approach offers a broad substrate scope, low catalyst loadings, and outstanding chemoselectivity, allowing for the selective reaction of oximes/hydroximic acids over hydroxyl groups that would otherwise pose challenges in conventional glycosylation methods. The synthetic utility of this method is further exemplified through a range of synthetic transformations and late-stage modification of bioactive molecules. Overall, our method provides an efficient toolkit for the synthesis of N-O-linked glycosides, which will facilitate their subsequent biological evaluations.
Collapse
Affiliation(s)
- Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yiyang Cheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xiaoxue Tao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wenjie Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhen Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
3
|
Cheng WF, Ma S, Lai YT, Cheung YT, Akkarasereenon K, Zhou Y, Tong R. BiBr 3 -Mediated Intramolecular Aza-Prins Cyclization of Aza-Achmatowicz Rearrangement Products: Asymmetric Total Synthesis of Suaveoline and Sarpagine Alkaloids. Angew Chem Int Ed Engl 2023; 62:e202311671. [PMID: 37724977 DOI: 10.1002/anie.202311671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
An intramolecular aza-Prins cyclization of aza-Achmatowicz rearrangement products was developed in which bismuth tribromide (BiBr3 ) plays a dual role as an efficient Lewis acid and source of the bromide nucleophile. This approach enables the facile construction of highly functionalized 9-azabicyclo[3.3.1]nonanes (9-ABNs), which are valuable synthetic building blocks and a powerful platform for the synthesis of a variety of alkaloid natural products and drug molecules. Suitable substrates for the aza-Prins cyclization include 1,1-disubstituted alkenes, 1,2-disubstituted alkenes, alkynes, and allenes, with good to excellent yields observed. Finally, we showcase the application of this new approach to the enantioselective total synthesis of six indole alkaloids: (-)-suaveoline (1), (-)-norsuaveoline (2), (-)-macrophylline (3), (+)-normacusine B (4), (+)-Na -methyl-16-epipericyclivine (5) and (+)-affinisine (6) in a total of 9-14 steps. This study significantly expands the synthetic utility of the aza-Achmatowicz rearrangement, and the strategy (aza-Achmatowicz/aza-Prins) is expected to be applicable to the total synthesis of other members of the big family of macroline and sarpagine indole alkaloids.
Collapse
Affiliation(s)
- Wai Fung Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yin Tung Lai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Singh K, Behera SS, Tyagi R, Tiwari G, Sagar R. Metal free synthesis of 2,3-dideoxy-α, β-unsaturated carbohydrate enals (Perlin aldehydes). Carbohydr Res 2023; 531:108890. [PMID: 37406515 DOI: 10.1016/j.carres.2023.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
A metal free synthesis of enantiopure 2,3-dideoxy-α, β-unsaturated carbohydrate enals (Perlin aldehydes), in CH3CN-0.02 N H2SO4 in water (1:1, v/v) with 0.5 equivalent additives (4-hydroxy-6-methyl-2-pyrone or 4-amino coumarin), has been reported. This efficient protocol works well for the acetylated glycals (glucal, galactal and arabinal) and afforded Perlin aldehydes and hemiacetals in acceptable to good yields. Whereas, benzylated glycals furnished respective Perlin aldehydes, hemiacetals and the 2-deoxy derivatives, under similar reaction conditions. The products yields were significantly reduced when the additives were removed from the reaction mixture, indicating that they constitute an essential component of this approach. Further the use of 0.02 N H2SO4 in water: acetonitrile (1:1, v/v) solvent system is essential for the formation of Perlin aldehydes. The similar reactions under neutral reaction conditions (CH3CN:H2O, 1:1, v/v) with additives, afforded the hemiacetals as major product. This methodology is a metal free approach to Perlin aldehyde synthesis and therefore having additional benefit of its use in preparation of bioactive drug molecules, where metal toxicity is the major concern.
Collapse
Affiliation(s)
- Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sourav Sagar Behera
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
5
|
Lu TY, Hsu WY, Huang BW, Han JL. Reagent-Controlled Regiodivergent Annulations of Achmatowicz Products with Vinylogous Nucleophiles: Synthesis of Bicyclic Cyclopenta[ b]pyrans and 8-Oxabicyclo[3.2.1]octane Derivatives. Org Lett 2022; 24:7806-7811. [PMID: 36259648 DOI: 10.1021/acs.orglett.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two reagent-controlled regiodivergent annulation protocols for Achmatowicz products with vinylogous nucleophiles have been developed, which furnished a series of bicyclic cyclopenta[b]pyrans and 8-oxabicyclo[3.2.1]octane derivatives in 28-90% yields. Plausible mechanisms were proposed to involve either Pd-catalyzed Tsuji-Trost allyl-allyl coupling and concomitant Michael cyclization or quinine-promoted cascade stepwise [5 + 2] cycloaddition and intramolecular Michael cyclization.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan, Republic of China
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan, Republic of China
| | - Bo-Wei Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan, Republic of China
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan, Republic of China
| |
Collapse
|
6
|
Liang L, Guo LD, Tong R. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products. Acc Chem Res 2022; 55:2326-2340. [PMID: 35916456 DOI: 10.1021/acs.accounts.2c00358] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The six-membered heterocycles containing oxygen and nitrogen (tetrahydropyrans, pyrans, piperidines) are among the most common heterocyclic structures ubiquitously present in bioactive molecules such as carbohydrates, small-molecule drugs, and natural products. Chemical synthesis of fully functionalized pyrans and piperidines is a research theme of practical importance and scientific significance and, thus, has attracted continuous interest from synthetic chemists. Among the numerous synthetic approaches, Achmatowicz rearrangement (AchR) represents a general and unique strategy that uses biomass-derived furfuryl alcohols as the renewable starting material to obtain fully functionalized six-membered oxygen/nitrogen heterocycles, which provides golden opportunities for organic chemists to address various synthetic challenges.This Account summarizes our 10 years of work on exploiting AchR to address some challenges in organic synthesis ranging from green chemistry and organic methodology to the total synthesis of natural products. We enabled the sustainable and safe use of AchR in a small (academia) or large (industrial) scale by developing two generations of green approaches for AchR (oxone-halide and Fenton-halide), which largely eliminate the use of the most popular, but more toxic and expansive, NBS and m-CPBA. This triggered our intensive interest in developing new green chemistry for important organic reactions, in particular, halogenation/oxidation reactions involving reactive halogenating species with the aim of eliminating the use of commonly used toxic halogen agents such as elemental bromine, chlorine gas, and various N-haloamide reagents (NBS, NCS, and NIS). We successfully employed oxone-halide and Fenton-halide as green alternatives to several mechanistically related organic reactions including arene/alkene halogenation, oxidation or oxidative rearrangement of indoles, oxidation of alcohols/thioacetals, and oxidative halogenation of aldoximes for the in situ generation of nitrile oxide. These green reactions are expected to have a solid impact on the future of organic synthesis in academia and industries.We expanded the synthetic utility of AchR by exploring several new transformations of AchR products and developed a cascade reductive ring expansion, reductive deoxygenation/Heck-Matsuda arylation, palladium-catalyzed C-arylation, and regiodivergent [3 + 2] cycloaddition with 1,3-dicarbonyls. These methodologies offer a new avenue to fully functionalized six-membered heterocycles.The synthetic utility of AchR was demonstrated in our total synthesis of 28 natural products with a pyran/piperidine moiety. The AchR-based strategy endows the total synthesis with scalability, sustainability, and flexibility. The green and scalable approaches developed in our lab for AchR allow us to easily obtain decagrams of synthetically valuable pyrans and/or piperidines with low risk and low cost from biomass-derived furfuryl alcohol/aldehyde.
Collapse
|
7
|
Zhang X, Tong Y, Li G, Zhao H, Chen G, Yao H, Tong R. 1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement. Angew Chem Int Ed Engl 2022; 61:e202205919. [PMID: 35670657 DOI: 10.1002/anie.202205919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/12/2022]
Abstract
1,3-Allyl and 1,2-allyl shifts through [3,3]- and [2,3]-sigmatropic rearrangements are well-established and widely used in organic synthesis. In contrast, 1,5-allyl shift through related [3,5]-sigmatropic rearrangement is unknown because [3,5]-sigmatropic rearrangement is thermally Woodward-Hoffmann forbidden. Herein, we report an unexpected discovery of a formal 1,5-allyl shift of allyl furfuryl alcohol through a 2-step sequential rearrangement. Mechanistically, this formal 1,5-allyl shift is achieved through a sequential ring expansion/contraction rearrangement: 1) Achmatowicz rearrangement (ring expansion), and 2) cascade oxonia-Cope rearrangement/retro-Achmatowicz rearrangement (ring contraction). This new 1,5-allyl shift method is demonstrated with >20 examples and expected to find applications in organic synthesis and materials chemistry.
Collapse
Affiliation(s)
- Xiayan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yi Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hao Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Guanye Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
8
|
Zhang XY, Tong Y, Li G, Zhao H, Chen G, Yao H, Tong R. 1,5‐Allyl Shift by a Sequential Achmatowicz/Oxonia‐Cope/Retro‐Achmatowicz Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiayan Y. Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong China
| | - Yi Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology Guangdong Academy of Sciences Guangzhou Guangdong, 510260 China
| | - Hao Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology Guangdong Academy of Sciences Guangzhou Guangdong, 510260 China
| | - Guanye Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology Guangdong Academy of Sciences Guangzhou Guangdong, 510260 China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology Guangdong Academy of Sciences Guangzhou Guangdong, 510260 China
| | - Rongbiao Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clearwater Bay, Kowloon, Hong Kong China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology Guangdong Academy of Sciences Guangzhou Guangdong, 510260 China
| |
Collapse
|
9
|
Zhuo N, Ma J, Cao L, Chen L, Nan F. Protecting‐Group‐Free One‐Step Palladium‐Catalyzed
Coupling on
C25
of Cucurbitacin B Expands Chemical Diversity with Improved Cytotoxicity against
A549
Cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ning Zhuo
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Lei Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210046 China
| | - Linhai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Fajun Nan
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
10
|
|
11
|
Affiliation(s)
- Guodong Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | | | | | - Rongbiao Tong
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Li J, Zheng N, Duan X, Li R, Song W. Palladium‐Catalyzed Regioselective and Diastereoselective
C
‐Glycosylation by Allyl‐Allyl Coupling. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junhao Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Xuelun Duan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Rui Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|
13
|
Xu MH, Yuan YH, Liang DD, Zhang XM, Zhang FM, Tu YQ, Ma AJ, Zhang K, Peng JB. Remote asymmetric conjugate addition catalyzed by a bifunctional spiro-pyrrolidine-derived thiourea catalyst. Org Chem Front 2021. [DOI: 10.1039/d1qo00238d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel spiro-pyrrolidine (SPD)-derived bifunctional thiourea catalyst has been developed and used in a stereoselective conjugate addition of furfurals to β,γ-unsaturated α-ketoesters.
Collapse
Affiliation(s)
- Ming-Hui Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Hai Yuan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Dong-Dong Liang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemistry & Chemical Engineering
| | - Ai-Jun Ma
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| |
Collapse
|