1
|
Polo-Cuadrado E, Acosta-Quiroga K, Rojas-Peña C, Rodriguez-Nuñez YA, Blanco-Acuña EF, Lopez JJ, Brito I, Cisterna J, Alderete JB, Gutiérrez M. Regioselective cyclocondensations with thiobarbituric acid: spirocyclic and azocine products, X-ray characterization, and antioxidant evaluation. RSC Adv 2025; 15:8609-8621. [PMID: 40109931 PMCID: PMC11921768 DOI: 10.1039/d4ra07966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Multicomponent cyclocondensations of 5-amino-3-methyl-1-phenyl-1H-pyrazole (AMPZ), thiobarbituric acid, and p-formaldehyde under conventional thermal heating or ultrasonic irradiation were studied. Treatment of the reaction mixture in ethanol in an ultrasonic bath for 3 h produced azocine compound 4b, while the same mixture in ethanol under reflux conditions for 15 h produced spiro compound 4a. This work encompasses intricate experimental details, X-ray diffraction measurements, and multifaceted computational analyses employing methods such as the density functional theory and Hirshfeld surface analysis. Crystallographic investigations revealed the molecular structure of the compound and clarified its interactions involving hydrogen bonds and weak intermolecular forces. This article describes the synthesis and characterization of a novel spirocyclic compound. The study also evaluated the antioxidant potential in vitro using the DPPH and ABTS methods. The results showed that these compounds showed the best free radical scavenging ability, even in very small amounts, and that even at very low concentrations, these compounds showed excellent radical scavenging potential. Surprisingly, these compounds exhibited strong (ABTS+) radical scavenging activities, mainly attributed to the HAT mechanism, indicating their potential as therapeutic agents. Facile multipurpose, three-component selective procedures for new spiroheterocycles have been proposed, presenting intriguing perspectives in the field of medicine, particularly in the field of antioxidants. The geometric values of the computationally optimized structure were calculated using the density functional theory in LC-BLYP/6-31(d), aligned with the X-ray diffraction data, reinforcing the precision of our findings.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepcion Chile
| | - Karen Acosta-Quiroga
- Doctorado en Quimica, Departamento de Quımica Organica y Fisicoquımica, Universidad de Chile Santiago Chile
| | - Cristian Rojas-Peña
- Doctorado en Quimica, Departamento de Quımica Organica y Fisicoquımica, Universidad de Chile Santiago Chile
| | - Yeray A Rodriguez-Nuñez
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Laboratorio de Síntesis y Reactividad de Compuestos Orgánicos Santiago 8370146 Chile
| | - Edgard Fabián Blanco-Acuña
- Grupo de Investigación en Ciencias Basicas (NUCLEO), Facultad de Ciencias e Ingenieria, Universidad de Boyacá Tunja Boyacá 150003 Colombia
| | - Jhon J Lopez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepcion Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avda, Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avda, Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte Sede Casa Central, Av. Angamos Antofagasta 0610 Chile
| | - Joel B Alderete
- Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
2
|
Peng D, Luo X, Zhu R, Tong W, Yang Y, Li G, Wang Q. Tagpyrrollins A and B and Tagpyrrollidone A: Three Pyrrole Steroid Analogues with AKR1B1-Targeting Inhibitory Activity from the Sponges Stylissa massa and Pseudospongosorites suberitoides. Org Lett 2024; 26:5794-5798. [PMID: 38935544 DOI: 10.1021/acs.orglett.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Pyrrole alkaloids (PAs) are a diverse class of natural products with complex carbon frameworks and broad bioactivities that are usually derived from marine sponges. Stylissa massa and Pseudospongosorites suberitoides are two independent sponges collected from the South China Sea in 2013 and 2018, respectively. We discovered PAs are common constituents in both two sponges; more specifically, S. massa produces pyrrole-imidazole alkaloids, and P. suberitoides contains pyrrolidone alkaloids. In this study, three pyrrole steroid metabolites were obtained. Compounds 1 and 2 are a pair of epimers sharing a new 5/7/5/6/6 pentacyclic structural configuration, and compound 3 has a new rigid 5/6/6 tricyclic structure. Interestingly, their scaffolds all possess a 6/6 bicyclic system on the featured classic pyrrole/pyrrolidone skeletons, so-dubbed tagpyrrollins A and B (1 and 2, respectively) and tagpyrrollidone A (3). From a biosynthetic viewpoint, 4,5-dihydroxypent-2-enal probably plays a crucial role in constructing these pyrrole steroid analogues. Based on our previous study on the inhibitory activity of spongiacidin targeting AKR1B1, a drug target for the treatment of chronic diabetic complications, in this study we found that tagpyrrolin A (1) also exhibits an inhibitory effect against AKR1B1.
Collapse
Affiliation(s)
- Di Peng
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiangchao Luo
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Runwei Zhu
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Wenli Tong
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Yanan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Guoqiang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Qi Wang
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| |
Collapse
|
3
|
Sherborne GJ, Diène C, Kemmitt P, Smith AD. Access to a Diverse Array of Bridged Benzo[1,5]oxazocine and Benzo[1,4]diazepine Structures. Org Lett 2023. [PMID: 37996078 DOI: 10.1021/acs.orglett.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The preparation of bridged benzo[1,5]oxazocines and benzo[1,4]diazepines is demonstrated from simple aniline and aldehyde starting materials. A one-pot condensation/6π electrocyclization is followed by an intramolecular trapping of the 2,3-dihydroquinoline intermediate by nitrogen or oxygen nucleophiles to give bridged seven- and eight-membered products. Using 3-hydroxypyridinecarboxaldehydes results in a stable zwitterionic structure that can undergo a diastereoselective reduction under hydrogenative conditions. A similar cyclization/hydrogenation pathway with excellent diastereoselectivity is also demonstrated from 2-pyridyl-substituted 1,2,3,4-tetrahydroquinolines.
Collapse
Affiliation(s)
- Grant J Sherborne
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Coura Diène
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Paul Kemmitt
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
4
|
Shkurko OP. Bridged 1,3(1,5)-benzoxazocines and 1,3,5-benzoxadiazocines as products of the Hantzsch and Biginelli reactions. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhu H, Chen L, Bai R, Gu Y. Acid‐Catalyzed Synthesis of Diverse Indol‐3‐yl‐Substituted Tetrahydropyridines via Three‐Component Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongmei Zhu
- Institute of Physical Chemistry and Industrial Catalysis CHINA
| | - Lei Chen
- Huazhong University of Science and Technology CHINA
| | - Rongxian Bai
- Huazhong University of Science and Technology CHINA
| | - Yanlong Gu
- Institute of Physical Chemistry and Industrial Catalysis CHINA
| |
Collapse
|
6
|
Avila-Montiel C, Tlahuext H, Ariza A, Godoy-Alcántar C, Tapia-Benavides AR, Tlahuextl M. Indium coordination compounds derived from amino amides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hugo Tlahuext
- Universidad Autonoma del Estado de Morelos Centro de Investigaciones Químicas MEXICO
| | - Armando Ariza
- Centro de Investigacion y de Estudios Avanzados del IPN: Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Chemistry Department MEXICO
| | | | | | - Margarita Tlahuextl
- Universidad Autonoma del Estado de Hidalgo Centro de Investigaciones Quimicas Carretera Pachuca-Tulancingo km 4.5 42184 Mineral de la Reforma MEXICO
| |
Collapse
|
7
|
Davis J, Gharaee M, Karunaratne CV, Cortes Vazquez J, Haynes M, Luo W, Nesterov VN, Cundari T, Wang H. Asymmetric Synthesis of Chromans Through Bifunctional Enamine-Metal Lewis Acid Catalysis. Chemistry 2022; 28:e202200224. [PMID: 35298095 DOI: 10.1002/chem.202200224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Abstract
Cooperative enamine-metal Lewis acid catalysis has emerged as a powerful tool to construct carbon-carbon and carbon-heteroatom bond forming reactions. A concise synthetic method for asymmetric synthesis of chromans from cyclohexanones and salicylaldehydes has been developed to afford tricyclic chromans containing three consecutive stereogenic centers in good yields (up to 87 %) and stereoselectivity (up to 99 % ee and 11 : 1 : 1 dr). This difficult organic transformation was achieved through bifunctional enamine-metal Lewis acid catalysis. It is believed that the strong activation of the salicylaldehydes through chelating to the metal Lewis acid and the bifunctional nature of the catalyst accounts for the high yields and enantioselectivity of the reaction. The absolute configurations of the chroman products were established through X-ray crystallography. DFT calculations were conducted to understand the mechanism and stereoselectivity of this reaction.
Collapse
Affiliation(s)
- Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Mojgan Gharaee
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | | | | | - Mikayla Haynes
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Weiwei Luo
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | | | - Thomas Cundari
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
8
|
Amiri-Zirtol L, Amrollahi MA, Mirjalili BF. GO-Fe 3O 4-Ti (IV) as an efficient magnetic catalyst for the synthesis of bis(indolyl)methanes and benzo [a]xanthen-11-one derivatives. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kumar A, Sridharan V. Transition Metal‐Catalyzed Synthesis of 1,2‐Diketones: An Overview. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atul Kumar
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| |
Collapse
|
10
|
Datta M. Recent Advances of Indium(III) Chloride Catalyzed Reactions in Organic Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202003828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mrityunjoy Datta
- Department of Chemistry Sarojini Naidu College for Women 30 Jessore Road Kolkata 700028 India
| |
Collapse
|
11
|
Liu H, Yan Y, Zhang J, Liu M, Cheng S, Wang Z, Zhang X. Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines. Chem Commun (Camb) 2020; 56:13591-13594. [DOI: 10.1039/d0cc05807f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines provided various (bridged) isoxazolines fused dihydrobenzofurans with moderate to good yields in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hui Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Yingkun Yan
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Jiayan Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Min Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Shaobing Cheng
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- China
| | - Xiaomei Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| |
Collapse
|