Zhang A, Kondhare D, Leonard P, Seela F. 5-Aza-7-deazaguanine-Isoguanine and Guanine-Isoguanine Base Pairs in Watson-Crick DNA: The Impact of Purine Tracts, Clickable Dendritic Side Chains, and Pyrene Adducts.
Chemistry 2021;
27:7453-7466. [PMID:
33443814 PMCID:
PMC8251886 DOI:
10.1002/chem.202005199]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/19/2022]
Abstract
The Watson-Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson-Crick and purine-purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2'-deoxyguanosine, its tripropargylamine derivative, and 2'-deoxyisoguanosine were synthesized. Duplex stability decreased if single modified purine-purine base pairs were inserted, but increased if pyrene residues were introduced by click chemistry. A growing number of consecutive 5-aza-7-deazaguanine-isoguanine base pairs led to strong stepwise duplex stabilization, a phenomenon not observed for the guanine-isoguanine base pair. Spacious residues are well accommodated in the large groove of purine-purine DNA tracts. Changes to the global helical structure monitored by circular dichroism spectroscopy show the impact of functionalization to the global double-helix structure. This study explores new areas of molecular recognition realized by purine base pairs that are complementary in hydrogen bonding, but not in size, relative to canonical pairs.
Collapse