1
|
Zhang Y, Mi YH, Wang K, Zhao HW. α-Carbonyl Rh-Carbenoid Initiated Cascade Assembly of Diazobarbiturates with Alkylidene Pyrazolones for Synthesis of Spirofuropyrimidines. Molecules 2024; 29:3178. [PMID: 38999130 PMCID: PMC11243257 DOI: 10.3390/molecules29133178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Catalyzed by Rh2(esp)2 (10 mol%) and (±)-BINAP (20 mol%) in DCE at 80 °C, the cascade assembly between diazobarbiturates and alkylidene pyrazolones proceeded readily and produced spiro-furopyrimidines in 38-96% chemical yields. The chemical structure of the prepared spirofuro-pyrimidines was firmly confirmed by X-ray diffraction analysis.
Collapse
Affiliation(s)
| | | | | | - Hong-Wu Zhao
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China; (Y.Z.); (Y.-H.M.); (K.W.)
| |
Collapse
|
2
|
Lu M. Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system? Heliyon 2024; 10:e30322. [PMID: 38756557 PMCID: PMC11096952 DOI: 10.1016/j.heliyon.2024.e30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.
Collapse
Affiliation(s)
- MengYu Lu
- HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
| |
Collapse
|
3
|
Zhang JQ, Han LB. Beyond Triphenylphosphine: Advances on the Utilization of Triphenylphosphine Oxide. J Org Chem 2024; 89:2090-2103. [PMID: 38271667 DOI: 10.1021/acs.joc.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Triphenylphosphine oxide is a well-known industrial waste byproduct, and thousands of tons of it are generated every year. Due to its chemical stability and limited applications, settlement of this waste issue has drawn extensive attention from chemists. The reduction of triphenylphosphine oxide to triphenylphosphine is heretofore the most employed solution, and is well reviewed. In view of our recent studies on the selective and efficient conversion of Ph3P(O) to other valuable organophosphorus chemicals by using sodium, the present perspective mainly highlights the advances on the utilization of Ph3P(O) to prepare a diverse range of functional organophosphorus compounds, except Ph3P, via selective P-C, C-H, and P-O bond cleavages.
Collapse
Affiliation(s)
- Jian-Qiu Zhang
- Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang Province 312369, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang Province 312369, China
| |
Collapse
|
4
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
7
|
Li C, Qi ZC, Li JY, Yang SD. Heck Reaction Boosted Heterocycle Ring-Closing and Ring-Opening Rearrangement: A Strategy for the Synthesis of Indolyl-Type Ligands. J Org Chem 2021; 86:16977-16991. [PMID: 34792365 DOI: 10.1021/acs.joc.1c02117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel method for P-involved heterocycle ring-closing-ring-opening rearrangement (HRR) via the Heck reaction is disclosed. The approach enables direct installation of a phosphorus-containing aryl group onto the C2 position of indole. This new rearrangement directly transforms easily prepared indole derivatives into indolyl-derived phosphonates and phosphinic acids with high yields, and many of the products are difficult to obtain by using established methods. This new HRR reaction provides an extremely simple and step-economic method to induce C-C bond formation and P-N bond cleavage for the synthesis of a variety of indolyl-type ligands.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing-Yu Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
8
|
Li XH, Gong JF, Song MP. Microwave-Assisted Ruthenium- and Rhodium-Catalyzed Couplings of α-Amino Acid Ester-Derived Phosphinamides with Alkynes. Chem Asian J 2021; 17:e202101158. [PMID: 34846096 DOI: 10.1002/asia.202101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Two different types of new phosphinamide α-amino ester derivatives have been prepared in moderate to high yields via ruthenium(II) and rhodium(III)-catalyzed ortho-C-H functionalization under microwave irradiation. Specifically, the ortho-alkenylated phosphinamides were produced through coupling of phosphinamides containing an α-substituted or α,α-disubstituted α-amino ester with internal alkynes under ruthenium catalysis. In contrast, Ru and the more effective Rh-catalyzed coupling of the α-unsubstituted glycine ester phosphinamide with alkynes resulted in formation of oxidative annulation products, phosphaisoquinolin-1-ones. The developed methods feature the use of easily accessible starting materials, short reaction time, exclusive E-stereoselectivity (for ortho-alkenylation) and good functional group tolerance. The alkenylation reaction was readily scaled up to gram scale. Furthermore, the obtained alkenylated phosphinamide could be transformed into P-containing dipeptides through hydrolysis of the ester group in the catalysis product and subsequent condensation with an α-amino ester.
Collapse
Affiliation(s)
- Xue-Hong Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Fang Gong
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Yang SD, Lou QX, Li JY. Iridium(III)-Catalyzed C−H Functionalization of Triarylphosphine Oxides with Diazo Dicarbonyl Compounds: Synthesis of α-Aryl 1,3-Dicarbonyl Derivatives. Synlett 2021. [DOI: 10.1055/a-1409-1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA novel (pentamethylcyclopenta-1,3-dienyl)iridium(III)-catalyzed direct C–H functionalization of triarylphosphine oxides with diazo dicarbonyl compounds through carbene insertion has been developed. This strategy provides a simple and efficient route to the construction of α-arylated 1,3-dicarbonyl compounds, which are important building blocks in pharmaceutical chemistry.
Collapse
|