1
|
Pang M, Ramazani A, Zhang Z, Zhang G. Reagent-assisted regio-divergent cyclization synthesis of pyrazole. Org Biomol Chem 2025; 23:2812-2817. [PMID: 39989324 DOI: 10.1039/d5ob00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The present study reveals a practical one-pot base-promoted regio-divergent cyclization of hydrazines with alkynyl silane under mild conditions, facilitating the synthesis of diverse silicone-substituted pyrazoles and functionalized pyrazoles in great yields with exceptional selectivity. This protocol is expected to afford a streamlined one-pot approach for the synthesis of multiple compounds in water.
Collapse
Affiliation(s)
- Mengdi Pang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China.
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, lran
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
- Department of Materials Science and Engineering, Shanxi Institute of Technology, Yangquan 045000, P. R. China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China.
| |
Collapse
|
2
|
Chakraborty S, Telang D, Mishra B, Hotha S. [Au]/[Ag]-catalysed synthesis of non-hydrolysable C-glycosides. Org Biomol Chem 2024; 22:9357-9360. [PMID: 39494511 DOI: 10.1039/d4ob01339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Many C-glycosides are found in natural products, drugs and small molecular probes. Herein, we report the synthesis of C-glycosides by the [Au]/[Ag]-catalysed activation of ethynylcyclohexyl glycosyl carbonate donors. This mild, catalytic, fast and high yielding protocol enables the synthesis of a diverse array of C-glycosides that were otherwise challenging to synthesize.
Collapse
Affiliation(s)
- Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune - 411 008, India.
| | - Daksh Telang
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune - 411 008, India.
| | - Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune - 411 008, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune - 411 008, India.
| |
Collapse
|
3
|
Xie H, Wang S, Shu XZ. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. J Am Chem Soc 2024; 146:32269-32275. [PMID: 39545714 DOI: 10.1021/jacs.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radical C-glycosylation presents a flexible and efficient method for synthesizing C-glycosides. Existing methods always require multistep processes for generating anomeric radicals. In this study, we introduce a streamlined approach to produce anomeric radicals through direct C-OH bond homolysis of unmodified saccharides, eliminating the need for protection, deprotection, or activation steps. These anomeric radicals selectively couple with activated alkenes, yielding C-glycosylation products with high stereoselectivity (>20:1). This method is applicable to a variety of native monosaccharides, such as l-arabinose, d-arabinose, d-xylose, l-xylose, d-galactose, β-d-glucose, α-d-glucose, and l-ribose, as well as oligosaccharides including α-lactose, d-(+)-melibiose, and acarbose. We also extend this approach to C-glycosylation of amino acid and peptide derivatives, and demonstrate a streamlined synthesis of an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
4
|
Hu L, Li R, Liu Y, Zhou J, Sun Z. Photocatalytic Synthesis of α-Ketonyl Glycosyl Compounds from Glycosyl Thiols and Silyl Enol Ethers. Org Lett 2024; 26:8188-8193. [PMID: 39297709 DOI: 10.1021/acs.orglett.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of C1-ketonyl glycosyl compounds featuring α-selectivity has seldom been reported. We herein devise a glycosyl radical-based approach to facilely access stereoenriched ketonyl glycosyl compounds via an Ir photoredox-catalyzed desulfurative addition to silyl enol ethers, using in situ-generated tetrafluoropyridinyl thioglycosides from glycosyl 1-thiols as radical precursors. This protocol features readily prepared starting materials, mild conditions, excellent functional group tolerance, satisfactory scale-up, and notable amenability to late-stage modification of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunqi Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junliang Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhankui Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Zhao G, Mukherjee U, Zhou L, Mauro JN, Wu Y, Liu P, Ngai MY. Excited-State Palladium-Catalyzed α-Selective C1-Ketonylation. CCS CHEMISTRY 2023; 5:106-116. [PMID: 36920159 PMCID: PMC10010662 DOI: 10.31635/ccschem.022.202202282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
C-Glycosides are important carbohydrate mimetics found in natural products, bioactive compounds, and marketed drugs. However, stereoselective preparation of this class of glycomimetics remains a significant challenge in organic synthesis. Herein, we report an excited-state palladium-catalyzed α-selective C-ketonylation strategy using readily available 1-bromosugars to access a range of C-glycosides. The reaction features excellent α-selectivity and mild conditions that tolerate a wide range of functional groups and complex molecular architectures. The resulting α-ketonylsugars can serve as versatile precursors for their β-isomers and other C-glycosides. Preliminary experimental and computational studies of the mechanism suggest a radical pathway involving the formation of palladoradical and glycosyl radical that undergoes polarity-mismatched coupling with silyl enol ether, affording the desired α-ketonylsugars. Insight into the reactivity and mechanism will inspire new reaction development and provide straightforward access to both α- and β-C-glycosides, greatly expanding the chemical and patent spaces of glycomimetics.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Upasana Mukherjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Lin Zhou
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jaclyn N Mauro
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Yue Wu
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peng Liu
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ming-Yu Ngai
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
6
|
Ding YN, Li N, Huang YC, An Y, Liang YM. Visible-Light-Induced Copper-Catalyzed Asymmetric C(sp 3)-C(sp 3)-H Glycosylation: Access to C-Glycopeptides. Org Lett 2022; 24:4519-4523. [PMID: 35729799 DOI: 10.1021/acs.orglett.2c01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, a practical and highly efficient method for visible-light-induced copper-catalyzed N-aminoquinoline-directed asymmetric C(sp3)-C(sp3)-H glycosylation was reported. At the same time, C(sp3)-C(sp3)-H glycosylation of nondeoxysugars with amino acids to construct C-glycopeptides was achieved. This approach promoted the synthesis of various C-glycopeptides and provided a new model for the synthesis of C-glycoamino acids.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
7
|
Javed, Khanam A, Mandal PK. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies. J Org Chem 2022; 87:6710-6729. [PMID: 35522927 DOI: 10.1021/acs.joc.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both glycoconjugates and oligosaccharides are important biomolecules having significant roles in several biological processes, and a new strategy for their synthesis is crucial. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf) promoted glycosidation approach with shelf-stable 3-phenyl-4-pentenoate glycosyl as a donor for the efficient synthesis of O/C-glycosides with free alcohols, silylated alcohols, and C-type nucleophile acceptors in good to excellent yields. The mild activation conditions and outstanding reactivity of phenyl substituted pentenoate donors analogous to 4-pentenoate glycosyl donors enhance their applicability to various one-pot strategies for the synthesis of oligosaccharides, such as single-catalyst one-pot and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Chen J, Tang Y, Yu B. A Mild Glycosylation Protocol with Glycosyl 1‐Methylimidazole‐2‐carboxylates as Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianpeng Chen
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
9
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|