1
|
Shin W, Hou Y, Wang X, Yang ZJ. Interplay between Energy and Entropy Mediates Ambimodal Selectivity of Cycloadditions. J Chem Theory Comput 2024; 20:10942-10951. [PMID: 39639796 DOI: 10.1021/acs.jctc.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
One ambimodal transition state can lead to the formation of multiple products. However, it remains fundamentally unknown how the energy and entropy along the post-TS pathways mediate ambimodal selectivity. Here, we investigated the energy and entropy profiles along the post-TS pathways in four [4 + 2]/[6 + 4] cycloadditions. We observe that the pathway leading to the minor product involves a more pronounced entropic trap. These entropic traps, resulting from the conformational change in the dynamic course of ring closure, act as a reservoir of longer-lived dynamic intermediates that roam on the potential energy surface and have a higher likelihood of redistributing to form the other product. The SpnF-catalyzed Diels-Alder reaction produces [4 + 2] and [6 + 4] adducts with nearly equal product distribution and relatively flat energy profiles, in contrast to other cycloadditions. Unexpectedly, the entropy profiles for these two adducts are distinctly different. The formation of the [6 + 4] adduct encounters an entropic barrier acting as a dynamical bottleneck, while the [4 + 2] adduct involves a substantial entropic trap to maintain long-lived intermediates. These opposing effects hinder both product formations and likely cancel each other out so that an equal product distribution is observed.
Collapse
Affiliation(s)
- Wook Shin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaning Hou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
Hou Y, Chen J, Liu W, Zhu G, Yang Q, Wang X. Using the Theozyme Model to Study the Dynamical Mechanism of the Post-Transition State Bifurcation Reaction by NgnD Enzyme. Molecules 2024; 29:5518. [PMID: 39683677 DOI: 10.3390/molecules29235518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Post-transition state bifurcation (PTSB) is a fundamental process in which a single transition state leads to multiple products. This phenomenon is important in both biological and chemical contexts and offers valuable insights into reaction mechanisms and their applications. The theozyme model, which focuses on key residues within enzymes, offers a computationally efficient method for studying these processes while preserving the enzyme's catalytic properties. This approach enhances our understanding of how enzymes stabilize and direct the transition state, thereby influencing product distribution and selectivity. In this study, we investigate the dynamics and regulatory mechanisms of the PTSB reaction catalyzed by the enzyme NgnD. The enzyme NgnD facilitates a cycloaddition reaction that produces both [6 + 4] and [4 + 2] adducts, with a preference for the [6 + 4] adduct. By analyzing the potential energy surface, bond length distribution, and interactions between the theozyme and the ambimodal transition state, we elucidate the role of the enzyme's active site residues in determining product selectivity. We illustrate how these key residues contribute to the formation of different adducts, providing insights from various perspectives. Using theozyme models, we propose how the four most influential active residues collectively might control the direction of adduct formation through their cumulative effects.
Collapse
Affiliation(s)
- Yaning Hou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingyun Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Weizhe Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Gaohua Zhu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qianying Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Kadiyam RK, Sangolkar AA, Faizan M, Pawar R. Bispericyclic Ambimodal Dimerization of Pentafulvene: The Origin of Asynchronicity and Kinetic Selectivity of the Endo Transition State. J Org Chem 2024; 89:6813-6825. [PMID: 38661667 DOI: 10.1021/acs.joc.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The propensity of fulvenes to undergo dimerization has long been known, although the in-depth mechanism and electronic behavior during dimerization are still elusive. Herein, we made an attempt to gain insights into the reactivity of pentafulvene for Diels-Alder (DA) and [6 + 4]-cycloadditions via conventional and ambimodal routes. The result emphasizes that pentafulvene dimerization preferentially proceeds through a unique bifurcation mechanism where two DA pathways merge together to produce two degenerate [4 + 2]-cycloadducts from a single TS. Despite the [6 + 4]-cycloadduct being thermodynamically preferred, [4 + 2]-cycloaddition reactions are kinetically driven. Singlet biradicaloid is involved in through-space 6e- delocalization as a secondary orbital interaction that originates asynchronicity and stabilizes the bispericyclic transition state (TS). The transformation of various actively participating intrinsic bonding orbitals (IBOs) unambiguously forecasts the formation of multiple products from a single TS and rationalizes the mechanism of ambimodal reactions that are rather difficult to probe with other analyses. The changes in active IBOs clearly distinguish the conventional reactions from bifurcation reactions and can be employed to characterize and confirm the ambimodal mechanism. This report gains a crucial theoretical insight into the mechanism of bifurcation, the origin of asynchronicity, and electronic behavior in ambimodal TS, which will certainly be of enormous value for future studies.
Collapse
Affiliation(s)
- Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| |
Collapse
|
4
|
Zhang P, Yu ZX. Dynamically or Kinetically Controlled? Computational Study of the Mechanisms of Electrophilic Aminoalkenylation of Heteroaromatics with Keteniminium Ions. J Org Chem 2024; 89:4326-4335. [PMID: 38506441 DOI: 10.1021/acs.joc.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Quantum chemical calculations and molecular dynamics simulations were applied to study the electrophilic aminoalkenylation of heteroaromatics with keniminium ions. Post-transition state bifurcation (PTSB) was found in the electrophilic addition step for the aminoalkenylation of pyrroles and indoles, and the selectivity for these reactions was dynamically controlled. However, the aminoalkenylation of furan was kinetically controlled because no apparent PTSB was found in the electrophilic addition step. The substituents on the keteniminium ions can also affect the dynamic results for the aminoalkenylations to pyrroles: the C2-aminoalkenylated product is much more favored over the C3-aminoalkenylated product for keteniminium ions with electron-donating substituents, while the product ratio (C2 product/C3 product) decreased when stronger electron-withdrawing substituents were applied.
Collapse
Affiliation(s)
- Pan Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Gu W, Zhang JZH. Substituent effects on the selectivity of ambimodal [6+4]/[4+2] cycloaddition. Phys Chem Chem Phys 2024; 26:9636-9644. [PMID: 38466583 DOI: 10.1039/d3cp06320h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this work, we report a density functional theory (DFT) study and a dynamical trajectory study of substituent effects on the ambimodal [6+4]/[4+2] cycloaddition proposed for 1,3,5,10,12-cycloheptadecapentaene, referred to as cycloheptadecapentaene. The proposed cycloaddition proceeds through an ambimodal transition state, which results in both a [6+4] adduct a [4+2] adduct directly. The [6+4] adduct can be readily converted to the [4+2] adduct via a Cope rearrangement. We study the selectivity of the reaction with regard to the position of substituents, steric effects of substituents, and electronic effects of substituents. In the dynamical trajectory study, we find that nitro-substituted reactants lead to a new product from the ambimodal transition state via the hetero Diels-Alder reaction, and this new product can then be converted to a [4+2] adduct by a hetero [3, 3]-sigmatropic rearrangement. These results may provide insights for designing more bridged heterocyclic compounds.
Collapse
Affiliation(s)
- Wenhao Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200126, China
- Department of Chemistry, New York University, NY, NY10003, USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
6
|
Tyukina SP, Velmiskina JA, Dmitrienko AO, Medvedev MG. Binomial Uncertainty in Molecular Dynamics-Based Reactions Analysis. J Phys Chem Lett 2024; 15:2105-2110. [PMID: 38358803 DOI: 10.1021/acs.jpclett.3c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Molecular Dynamics-based reaction analysis is an indispensable tool for studying processes defying the transition-state theory (TST), where the product ratios do not follow energies of transition states. The main class of such processes is ambimodal reactions, which have a post-transition-state bifurcation, so that several products form via a single transition state. Multiple runs of molecular dynamics allow one to sample the space of possibilities and ultimately predict the product ratio without relying on TST; however, no techniques for estimating the reliability of the prediction were proposed so far. Here we show that dynamics runs follow the same rules as die rolls, which paves a simple way for estimating their uncertainty and, accordingly, the number of runs necessary to achieve the required accuracy. Remarkably, we find that the majority of such studies carried out in the last 5 years use far too few runs, so that the product ratios predicted in them can be off by >50% in more than 50% of cases.
Collapse
Affiliation(s)
- Sofya P Tyukina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Julia A Velmiskina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Artem O Dmitrienko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Ge F, Zhang L, Hou YF, Chen Y, Ullah A, Dral PO. Four-Dimensional-Spacetime Atomistic Artificial Intelligence Models. J Phys Chem Lett 2023; 14:7732-7743. [PMID: 37606602 DOI: 10.1021/acs.jpclett.3c01592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
We demonstrate that AI can learn atomistic systems in the four-dimensional (4D) spacetime. For this, we introduce the 4D-spacetime GICnet model, which for the given initial conditions (nuclear positions and velocities at time zero) can predict nuclear positions and velocities as a continuous function of time up to the distant future. Such models of molecules can be unrolled in the time dimension to yield long-time high-resolution molecular dynamics trajectories with high efficiency and accuracy. 4D-spacetime models can make predictions for different times in any order and do not need a stepwise evaluation of forces and integration of the equations of motions at discretized time steps, which is a major advance over traditional, cost-inefficient molecular dynamics. These models can be used to speed up dynamics, simulate vibrational spectra, and obtain deeper insight into nuclear motions, as we demonstrate for a series of organic molecules.
Collapse
Affiliation(s)
- Fuchun Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Lina Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Yi-Fan Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Yuxinxin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Arif Ullah
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
8
|
Pedrón M, Sendra J, Ginés I, Tejero T, Vicario JL, Merino P. Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones. Beilstein J Org Chem 2023; 19:477-486. [PMID: 37123091 PMCID: PMC10130903 DOI: 10.3762/bjoc.19.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The contribution to the energy barrier of a series of tethers in transannular cycloadditions of cycloalkenes with hydrazones has been computationally studied by using DFT. The Houk's distortion model has been employed to evaluate the influence of the tether in the cycloaddition reaction. That model has been extended to determine the contribution of each tether and, more importantly, the effect exerted between them. In addition to the distortion induced by the tethers, the entropy effects caused by them has also been studied. The analysis of the evolution of the electron localization function along the reaction revealed the highly concerted character of the reaction.
Collapse
Affiliation(s)
- Manuel Pedrón
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jana Sendra
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Irene Ginés
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (SQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jose L Vicario
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Kanoh N. Naturally Occurring Polyene Macrolactams as Pluripotent Stem Molecules: Their Chemistry and Biology, and Efforts toward the Creation of Polyene Macrolactam-based Induced Pluripotent Small Molecules. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
10
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
11
|
Wang X, Zhang C, Jiang Y, Wang W, Zhou Y, Chen Y, Zhang B, Tan RX, Ge HM, Yang ZJ, Liang Y. Influence of Water and Enzyme on the Post-Transition State Bifurcation of NgnD-Catalyzed Ambimodal [6+4]/[4+2] Cycloaddition. J Am Chem Soc 2021; 143:21003-21009. [PMID: 34851644 DOI: 10.1021/jacs.1c10760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme NgnD catalyzes an ambimodal cycloaddition that bifurcates to [6+4]- and [4+2]-adducts. Both products have been isolated in experiments, but it remains unknown how enzyme and water influence the bifurcation selectivity at the femtosecond time scale. Here, we study the impact of water and enzyme on the post-transition state bifurcation of NgnD-catalyzed [6+4]/[4+2] cycloaddition by integrating quantum mechanics/molecular mechanics quasiclassical dynamics simulations and biochemical assays. The ratio of [6+4]/[4+2] products significantly differs in the gas phase, water, and enzyme. Biochemical assays were employed to validate computational predictions. The study informs how water and enzyme affect the bifurcation selectivity through perturbation of the reaction dynamics in the femtosecond time scale, revealing the fundamental roles of condensed media in dynamically controlling the chemical selectivity for biosynthetic reactions.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Chun Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Zhou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Titov IY, Stroylov VS, Rusina P, Svitanko IV. Preliminary modelling as the first stage of targeted organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to present a classification and applicability analysis of methods for preliminary molecular modelling for targeted organic, catalytic and biocatalytic synthesis. The following three main approaches are considered as a primary classification of the methods: modelling of the target – ligand coordination without structural information on both the target and the resulting complex; calculations based on experimentally obtained structural information about the target; and dynamic simulation of the target – ligand complex and the reaction mechanism with calculation of the free energy of the reaction. The review is meant for synthetic chemists to be used as a guide for building an algorithm for preliminary modelling and synthesis of structures with specified properties.
The bibliography includes 353 references.
Collapse
|
14
|
Houk KN, Liu F, Yang Z, Seeman JI. Die Evolution des Diels‐Alder‐Reaktionsmechanismus seit den 1930er Jahren: Woodward, Houk zusammen mit Woodward und der Einfluss der Computerchemie auf das Verständnis von Cycloadditionen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202001654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles California 90005 USA
| | - Fang Liu
- Department of Chemistry and Biochemistry University of California Los Angeles California 90005 USA
- College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Zhongyue Yang
- Department of Chemistry and Biochemistry University of California Los Angeles California 90005 USA
| | - Jeffrey I. Seeman
- Department of Chemistry University of Richmond Richmond Virginia 23173 USA
| |
Collapse
|
15
|
Houk KN, Liu F, Yang Z, Seeman JI. Evolution of the Diels–Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angew Chem Int Ed Engl 2021; 60:12660-12681. [DOI: 10.1002/anie.202001654] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/30/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90005 USA
| | - Fang Liu
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90005 USA
- College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Zhongyue Yang
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90005 USA
| | - Jeffrey I. Seeman
- Department of Chemistry University of Richmond Richmond VA 23173 USA
| |
Collapse
|
16
|
Zhang K, Wang Y, Zhu H, Peng Q. Advances on Quasi-classical Molecular Dynamics of Organic Reaction Mechanisms. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Urabe D, Fukaya K. Systematic Search for Transition States in Complex Molecules: Computational Analyses of Regio- and Stereoselective Interflavan Bond Formation in Flavan-3-ols. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|