1
|
Wang ZL, Zhu R. Controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Nat Commun 2025; 16:2506. [PMID: 40082432 PMCID: PMC11907067 DOI: 10.1038/s41467-025-57723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
In contrast to allyl palladium complexes, propargylic/allenylic palladium species display complex reactivities that limit their implementation in polymer chemistry, especially for chain-growth polymerizations. Here we report an example of controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Vinylidenecyclopropane 1,1-dicarboxylate (VDCP), a unique allenylic electrophile, selectively reacts via the σ-allenyl palladium complex rather than the more common π-propargyl pathway, thereby unlocking a chain-growth process. Based on this concept, precise synthesis of alkyne-backbone polymers is realized, featuring fast rate, high molecular weight, narrow dispersity, high chemoselectivity, and excellent end-group fidelity. We demonstrate preparation of unsaturated macromolecules with advanced sequences and architectures using this method, including block, gradient, and graft copolymers.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Rong Zhu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
2
|
Jiang H, Yu M, Zhang S, Jin L, Zhang Y, Huang X. Palladium-Catalyzed Intermolecular 1,3-Dienylation of Propargyl Esters Involving the Insertion of SO 2. Org Lett 2025; 27:2220-2227. [PMID: 39978934 DOI: 10.1021/acs.orglett.5c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A palladium-catalyzed three-component 1,3-dienylation of propargylic esters with DABSO and aryl iodides has been developed. This novel reductive cross-coupling reaction produces 2-sufonylated 1,3-dienes as single products in the presence of reductive metal Mn with high regio- and chemoselectivities. Control experiments demonstrated that the transformation may undergo a radical process.
Collapse
Affiliation(s)
- Haohao Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Mengzhao Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuoshuo Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ling Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yue Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaolei Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
3
|
Gan MQ, Zhu JX, Chen ZC, Du W, Chen YC. Palladium-Catalyzed Divergent Synthesis from o-Sulfonamido Trifluoroacetophenones and 2-En-4-ynyl Carbonates. Org Lett 2025; 27:1989-1993. [PMID: 39954293 DOI: 10.1021/acs.orglett.5c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Here we present a palladium-catalyzed divergent transformative reaction between o-sulfonamido trifluoroacetophenones and 2-en-4-ynyl carbonates. A spectrum of enantioenriched 2,5-dihydrofuran-fused tetrahydroquinolines bearing either a (Z)- or (E)-exocyclic double bond are constructed with moderate to high enantioselectivity from 5-aryl-substituted carbonates by tuning palladium sources, while analogous 2,3-dihydrofuran-fused products are furnished by using 5-alkyl-substituted ones.
Collapse
Affiliation(s)
- Meng-Qi Gan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
He ZL, Li L, Chen ZC, Du W, Chen YC. Palladium-catalysed asymmetric cascade transformations of 4-alken-2-ynyl carbonates to construct complex frameworks. Chem Sci 2025; 16:3124-3129. [PMID: 39829975 PMCID: PMC11737346 DOI: 10.1039/d4sc07823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
As a class of readily available and multifunctional building blocks, the chemistry of 4-alken-2-ynyl carbonates remains to be explored. Presented herein is a palladium-catalysed cascade transformative reaction between 4-alken-2-ynyl carbonates and ortho-functionalised activated alkenes. Achiral 1,1-bisalkyl-4-alken-2-ynyl carbonates undergo highly regioselective propargylic substitution with ortho-hydroxyphenyl-tethered activated alkenes, and an auto-tandem vinylogous addition, unusual central-carbon Tsuji-Trost alkylation, protonation and β-H elimination process is followed to furnish fused and spirocyclic frameworks with high structural complexity. Even kinetic transformations with racemic 1-monoalkylated 4-alken-2-ynyl carbonates can be accomplished in the assemblies with ortho-aminophenyl-tethered activated alkenes to afford the analogous alkaloid architectures. This palladium-catalysed auto-tandem protocol exhibits excellent chemo-, regio-, stereoselectivity and reaction efficacy, and substantial functionality compatibility is also observed.
Collapse
Affiliation(s)
- Ze-Liang He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Li Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
5
|
Sah P, Kapur M. Palladium-catalyzed distal γ- and ε-benzylation, allylation and allenylation of enones. Chem Commun (Camb) 2025; 61:1874-1877. [PMID: 39775281 DOI: 10.1039/d4cc05607h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new endo- and exo-alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.
Collapse
Affiliation(s)
- Pooja Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, MP, India.
| |
Collapse
|
6
|
Hu T, Beluze C, Fagué V, Kambire OE, Bouyssi D, Monteiro N, Amgoune A. Nickel-Catalyzed Photoredox Allenylation of Alkyl Halides. Org Lett 2024; 26:9519-9524. [PMID: 39454201 DOI: 10.1021/acs.orglett.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
We report a dual Ni/photoredox-catalyzed cross-coupling method for propargyl carbonates and nonactivated alkyl bromides, facilitating the synthesis of a variety of substituted allenes under mild and practical conditions. Mechanistically, the reaction integrates Ni-catalyzed activation of the propargyl electrophile via SN2' oxidative addition at Ni(I) with silyl radical-induced activation of the alkyl halide through halogen-atom transfer. This methodology provides a gentle approach for introducing allenyl groups into complex halogenated aliphatic molecules, offering further opportunities for derivatization.
Collapse
Affiliation(s)
- Tingjun Hu
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Camille Beluze
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Vincent Fagué
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Oho Eliantine Kambire
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
7
|
Zhao Z, Zhu L, Song ZL, Qubi K, Ouyang Q, Du W, Chen YC. Nickel-Catalyzed Asymmetric (3 + 2) Annulations of Propargylic Carbonates and Vinylogous Donors via an Alkenylation Pathway. J Am Chem Soc 2024; 146:30678-30685. [PMID: 39439091 DOI: 10.1021/jacs.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The transition-metal-catalyzed alkenylation strategy of propargylic alcohol derivatives provides an efficient protocol to access multifunctional products in a double-nucleophilic attack pattern. While limited relevant asymmetric examples have been reported via palladium catalysis, here we first demonstrate that a nonprecious Ni(0)-based chiral complex can efficiently promote the tandem substitution process between propargylic carbonates and N-trifluoroethyl ketimines via consecutive aza-vinylogous activations, finally accomplishing a (3 + 2) annulation reaction to afford products embedding a 4-methylene-3,4-dihydro-2H-pyrrole framework with high regio-, diastereo-, and enantiocontrol. Their assemblies with a few all-carbon-based vinylogous precursors are also successful, and enantioenriched adducts containing a 3-methylenecyclopentene scaffold are furnished effectively. The substitution patterns for both types of substrates are substantial, and an array of synthetic elaborations is conducted to deliver more versatile architectures with high application potential. In addition, density functional theory calculations and control experiments have been conducted to rationalize the catalytic pathways and regio- and enantioselectivity control.
Collapse
Affiliation(s)
- Zhi Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhao-Li Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keji Qubi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
8
|
Shi B, Xiao M, Zhao JP, Zhang Z, Xiao WJ, Lu LQ. Synthesis of Chiral Endocyclic Allenes and Alkynes via Pd-Catalyzed Asymmetric Higher-Order Dipolar Cycloaddition. J Am Chem Soc 2024; 146:26622-26629. [PMID: 39293040 DOI: 10.1021/jacs.4c10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A Pd-catalyzed asymmetric higher-order dipolar cycloaddition between allenyl carbonates and azadienes is achieved by exploiting novel alkylidene-π-allyl-Pd dipoles. This research provides a modular platform for the synthesis of challenging chiral endocyclic allenes bearing a medium-sized heterocyclic motif and a centrally chiral stereocenter in good yields with high enantio- and diastereoselectivities (29 examples, up to 97% yield, 97:3 er and >19:1 dr). Experimental and computational studies elucidate the possible reaction mechanism and the observed stereochemical results. Based on the mechanistic understanding, a new π-propargyl-Pd dipole was designed to further extend the success of the higher order dipolar cycloaddition strategy to the synthesis of 10-membered endocyclic alkynes from propargyl carbonates and azadienes (13 examples, up to 98% yield and 94.5:5.5 er).
Collapse
Affiliation(s)
- Bin Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Meng Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jin-Pu Zhao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430082, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Abe M, Kawamoto M, Mizukami A, Kimachi T, Inamoto K. Palladium-Catalyzed Heteroannulation of Salicylamides with Propargyl Carbonates: Synthesis of 1,4-Benzoxazepin-5-ones. J Org Chem 2024; 89:10037-10046. [PMID: 38946164 DOI: 10.1021/acs.joc.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Herein, we report a palladium-catalyzed method to synthesize 1,4-benzoxazepin-5-ones using salicylamides and propargyl carbonates. The heteroannulation provides a wide range of products in good to excellent yields with broad functional group tolerance. In addition, H2O is used as a low-cost, abundant, and safe solvent, which is important in terms of sustainability.
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Megumu Kawamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Akiho Mizukami
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
10
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
11
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
12
|
Xu J, Ge Z, Ding K, Wang X. Rh(II)/Pd(0) Dual-Catalyzed Regio-Divergent Three-Component Propargylic Substitution. JACS AU 2023; 3:2862-2872. [PMID: 37885573 PMCID: PMC10598837 DOI: 10.1021/jacsau.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Regio-divergent propargylic substitution to generate functionally diverse products from identical starting materials remains a formidable challenge, probably due to the unpredictable regiochemical complexity. In practically, the synthesis of α-quaternary propargylic-substituted products is still much less developed, and preprepared nucleophiles are generally applied in this type of reaction with propargylic substrates, which limits the reaction efficiency and diversity of the obtained products. Herein, we disclose unprecedented three-component propargylic substitution of α-diazo esters with amines and propargylic carbonates under dirhodium/palladium dual catalysis. The key to the success of this multicomponent propargylic substitution is to avoid two-component side reactions through a tandem process of dirhodium(II)-catalyzed carbene insertion and palladium-catalyzed regiodivergent propargylic substitution. The judicious selection of a diphosphine (dppf) or monophosphine (tBuBrettphos) as the ligand is crucial for the reaction to generate different products in a switchable way, α-quaternary 1,3-dienyl or propargylated products, with high regio- and chemoselectivities.
Collapse
Affiliation(s)
- Jie Xu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaoliang Ge
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, 800 Dongchuan
Road, Shanghai 200240, China
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
| |
Collapse
|
13
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Cobalt-Promoted Electroreductive Cross-Coupling of Prop-2-yn-1-yl Acetates with Chloro(vinyl)silanes. Org Lett 2023; 25:7263-7267. [PMID: 37756013 DOI: 10.1021/acs.orglett.3c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Singh S, Parammal A, Kumar M, X JS, Subramanian P. Iso-Pentadienyl Carbonate as a Five Carbon Synthon in Manganese(I)-Catalyzed Selective Linear 1,3-Dienylation. Chemistry 2023; 29:e202301632. [PMID: 37518839 DOI: 10.1002/chem.202301632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Athira Parammal
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Manoj Kumar
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Joe Sam X
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Parthasarathi Subramanian
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
15
|
Zhang D, Fan J, Shi Y, Huang Y, Fu C, Wu X, Ma S. Copper-catalyzed propargylic C-H functionalization for allene syntheses. Chem Sci 2023; 14:9191-9196. [PMID: 37655026 PMCID: PMC10466309 DOI: 10.1039/d3sc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Allenenitriles bearing different synthetically versatile functional groups have been prepared smoothly from 5-alkynyl fluorosulfonamides in decent yields with an excellent chemo- and regio-selectivity under redox neutral conditions. The resulting allenenitriles can be readily converted to useful functionalized heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based non-activated propargylic C-H functionalization for allene syntheses.
Collapse
Affiliation(s)
- Dongjie Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yankai Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
16
|
Liu Q, Zheng J, Zhang X, Ma S. Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process. Nat Commun 2022; 13:3302. [PMID: 35676260 PMCID: PMC9177964 DOI: 10.1038/s41467-022-30655-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Different from the traditional two-electron oxidative addition-transmetalation-reductive elimination coupling strategy, visible light has been successfully integrated into transition metal-catalyzed coupling reaction of propargylic alcohol derivatives highly selectively forming allenenitriles: specifically speaking, visible light-mediated Cu-catalyzed cyanation of propargylic oxalates has been realized for the general, efficient, and exclusive syntheses of di-, tri, and tetra-substituted allenenitriles bearing various synthetically versatile functional groups. A set of mechanistic studies, including fluorescence quenching experiments, cyclic voltammetric measurements, radical trapping experiments, control experiments with different photocatalyst, and DFT calculation studies have proven that the current reaction proceeds via visible light-induced redox-neutral reductive quenching radical mechanism, which is a completely different approach as compared to the traditional transition metal-catalyzed two-electron oxidative addition processes.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China. .,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China.
| |
Collapse
|
17
|
Dai M, Sun Z, Chen L. Palladium‐Catalyzed Regiodivergent Synthesis of 1,3‐Dienyl and Allyl Esters from Propargyl Esters. Angew Chem Int Ed Engl 2022; 61:e202203835. [DOI: 10.1002/anie.202203835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Mengfu Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Zhimin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Liang‐An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
18
|
Dai M, Sun Z, Chen L. Palladium‐Catalyzed Regiodivergent Synthesis of 1,3‐Dienyl and Allyl Esters from Propargyl Esters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfu Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Zhimin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Liang‐An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
19
|
Nie XD, Mao ZY, Guo JM, Si CM, Wei BG, Lin GQ. AgNTf 2-Catalyzed Regioselective C-H Alkenylation of N,N-Dialkylanilines with Ynamides. J Org Chem 2022; 87:2380-2392. [PMID: 35041783 DOI: 10.1021/acs.joc.1c02263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regioselective C-H alkenylation of N,N-dialkylanilines with ynamides was developed using AgNTf2 as a catalyst. This approach represents a facile hydroarylation of ynamides, allowing for the introduction of an alkenyl group exclusively at the para position of aniline derivatives. As a result, a series of 4-alkenyl N,N-dialkylanilines were synthesized with excellent regioselectivities.
Collapse
Affiliation(s)
- Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
20
|
Xia JT, Li L, Hu XP. Copper-Catalyzed Decarboxylative Propargylic Alkylation of Enol Carbonates: Stereoselective Synthesis of Quaternary α-Amino Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jin-Tao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
21
|
Kuribara T, Nakajima M, Nemoto T. Mechanistic Studies of the Pd- and Pt-Catalyzed Selective Cyclization of Propargyl/Allenyl Complexes. J Org Chem 2021; 86:9670-9681. [PMID: 34176262 DOI: 10.1021/acs.joc.1c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the discovery of an unusual transition-metal-catalyzed reaction, the elucidation of the underlying mechanism is essential to understand the characteristic reactivity of the metal. We previously reported a synthetic method for tricyclic indoles using Pt-catalyzed Friedel-Crafts-type C-H coupling. In this reaction, the Pt catalyst selectively formed a seven-membered ring, but the Pd catalyst only afforded a six-membered ring. However, the reasons for the different selectivities caused by Pd and Pt were unclear. We performed density functional theory (DFT) calculations and experimental studies to reveal the origin of the different behaviors of the two metals. The calculations revealed that the formation of the six- and seven-membered rings proceeds via η1-allenyl and η3-propargyl/allenyl complexes, respectively. A molecular orbital analysis of the η3-propargyl/allenyl complex revealed that, for the platinum complex, the energy required to convert the unoccupied molecular orbital on the reactive carbon into the lowest unoccupied molecular orbital (LUMO) was lower than that for the palladium complex. In addition, DFT calculations revealed that the combination of platinum and bis[2-(diphenylphosphino)phenyl] ether (DPEphos) reduced the activation energy of the seven-membered cyclization in comparison with palladium or PPh3. Additional experimental studies, including NMR studies and stoichiometric reactions, support the aforementioned examination.
Collapse
Affiliation(s)
- Takahito Kuribara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
22
|
Bi W, Yang Y, Ye S, Wang C. Umpolung coupling of pyridine-2-carboxaldehydes and propargylic carbonates via N-heterocyclic carbene/palladium synergetic catalysis. Chem Commun (Camb) 2021; 57:4452-4455. [PMID: 33949494 DOI: 10.1039/d1cc01311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The umpolung cross-coupling reaction of pyridine-2-carboxaldehydes and propargylic carbonates has been developed for the first time through N-heterocyclic carbene/palladium cooperative catalysis with the judicious selection of the palladium catalyst, ligand and N-heterocyclic carbene, giving the propargylic ketones regioselectively.
Collapse
Affiliation(s)
- Weiyang Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|
23
|
Barlow SR, Callaghan LJ, Franckevičius V. Investigation of the palladium-catalysed cyclisation of α-amido malonates with propargylic compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|