1
|
Xia F, Wang YH, Ding XY, Zhang CP. Photoinduced Copper-Mediated Difluoroalkylation of Arylsulfonium Salts with XCF 2COR. Chem Asian J 2025:e202500331. [PMID: 40256886 DOI: 10.1002/asia.202500331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Photoredox fluoroalkylation has emerged as a powerful method and have unlocked new possibilities in organic chemistry. In this work, the green-light-induced copper-mediated difluoroalkylation of arylsulfonium salts with different XCF2COR reagents is described. The reaction proceeded smoothly at ambient temperature under mild conditions and allowed the formation of a variety of difluoroalkylated arenes in good yields. The photocatalyst, visible-light, and Cu(I) salt played a synergetic role in the reduction of arylsulfonium salt and XCF2COR to the respective radical intermediates. This metallophotoredox protocol was applicable to the late-stage difluoroalkylation of multifunctionalized bioactive molecules, offering opportunities to the discovery of new medicinal agents. The transformation showed advantages of mildness, simple operation, good functional group tolerance, a wide range of substrates, and excellent regioselectivity, which provided an interesting alternative to other difluoroalkylation reactions in terms of structural diversity, selectivity, and availability by the application of arylsulfonium platforms.
Collapse
Affiliation(s)
- Fang Xia
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan, 430070, China
| | - Yan-Hao Wang
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing-Yu Ding
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Abstract
A mild approach to the visible-light-mediated bimetal-catalyzed meta-alkylation of arenes has been accomplished. The regioselective meta-alkylation is realized by a bimetallic ruthenium-palladium system. Ruthenium acts as a catalyst for the directing effect and as a photosensitizer, while the cocatalyst palladium behaves as a catalyst for the generation of fluoroalkyl radicals. This reaction not only is suitable for two-component meta-fluoroalkylation of arenes but can also be extended to three-component reactions to achieve bifunctionalization of olefins.
Collapse
Affiliation(s)
- Peng-Cheng Cui
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
4
|
Visible-light-enabled ruthenium-catalyzed para-C−H difluoroalkylation of anilides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gou Q, Chen Q, Tan Q, Zhu M, Huang H, Deng M, Yi W, He S. Divergent Regioselective Csp 2-H Difluoromethylation of Aromatic Amines Enabled by Nickel Catalysis. Org Lett 2022; 24:3549-3554. [PMID: 35522204 DOI: 10.1021/acs.orglett.2c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the first catalytic protocol for nickel-catalyzed ortho or para position difluoromethylation of various aromatic amines has been developed with the assistance of a bidentate phosphine ligand, offering an invaluable synthesis means to construct extensive p-difluoromethylated products and difluorooxindole derivatives with significant functional fragments. Furthermore, the gram-scale reaction, broad substrate scope, excellent functional-group compatibility, late-stage difluoromethylation of pesticides, and even formal synthesis of HDAC6 inhibitors further demonstrate the usefulness of this method.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Qianqiong Chen
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Qiujian Tan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Minghong Zhu
- Fuling Hospital, Chongqing University, Chongqing 408000 China
| | - Huisheng Huang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Mengjiao Deng
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Wei Yi
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Shuhua He
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| |
Collapse
|
6
|
Jiang X, Jiang Y, Liu Q, Li B, Shi DQ, Zhao Y. Visible-Light-Induced para-Difluoroalkylation of Aniline Derivatives. J Org Chem 2022; 87:3546-3554. [PMID: 35170321 DOI: 10.1021/acs.joc.1c03095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Visible-light-induced, iridium catalyzed, para-selective C-H difluoroalkylation of aniline derivatives under mild reaction conditions is reported. Various substrates and bioactive compounds, such as precursors of vorinostat and chlorpropham, were all well tolerated. This protocol features a wide substrate scope, high regioselectivity, low catalyst usage, and operational simplicity.
Collapse
Affiliation(s)
- Xipeng Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yaqiqi Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, PR China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, PR China
| |
Collapse
|
7
|
Shi L, An D, Mei GJ. Difluoromethylation of Heterocycles via a Radical Process. Org Chem Front 2022. [DOI: 10.1039/d2qo00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difluoromethylation is of prime importance for its applicability in functionalizing diverse fluorine-containing heterocycles, which are core moieties of various biologically and pharmacologically active ingredients. Due to their significant biological and...
Collapse
|
8
|
Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Org Chem Front 2022. [DOI: 10.1039/d1qo01544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the advances in transition-metal catalyzed reactions with fluorinated building blocks via directed C–H bond activation for the construction of diverse organic molecules with an insight into the probable mechanistic pathway.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Vivek Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Aishwarya Lad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| |
Collapse
|
9
|
Saranya PV, Aneeja T, Anilkumar G. Palladium‐catalyzed difluoromethylation and difluoroalkylation reactions: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Zhao Y, Ju G, Tu G. Recent Advances in Transition-Metal-Catalyzed Selective C–H Alkoxycarbonyldifluoromethylation Reactions of Aromatic Substrates. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1522-7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorine is well-known as a very special element. Approximately 30% of agrochemicals and 20% of all drugs contain fluorine; most of those compounds have unique functions in biochemistry, pharmacy, and bioscience and those containing alkoxycarbonyldifluoromethyl functional groups often have irreplaceable roles. Therefore, the selective introduction of alkoxycarbonyldifluoromethylated functional groups into various aromatic substrates has significant practical application. This review describes recent advances in selective alkoxycarbonyldifluoromethylation of aromatic substrates by using different catalytic strategies (cyclometalated ruthenium complex, transient regulating and visible-light-induced strategies).1 Introduction2 para-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives2.1 Ruthenium Catalysis2.2 Palladium Catalysis2.3 Visible-Light Catalysis2.4 Iron Catalysis3 meta-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives3.1 Ruthenium Catalysis3.2 Palladium Catalysis4 The Influence of Transition Metals and Directing Groups on Site Selectivity of Alkoxycarbonyldifluoromethylation4.1 The Influence of Directing Groups on the Site Selectivity of Alkoxycarbonyldifluoromethylation4.2 The Influence of Transition Metals on the Site Selectivity of Alkoxycarbonyldifluoromethylation5 Conclusions
Collapse
Affiliation(s)
- Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
- School of Chemistry and Chemical Engineering, Henan Normal University
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| | - Guanglian Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| |
Collapse
|
11
|
Zhu Y, Hui L, Zhang S. A Palladium(0)‐Catalyzed C4 Site‐Selective C−H Difluoroalkylation of Isoquinolin‐1(
2H
)‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- You‐Quan Zhu
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Li‐Wen Hui
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Shi‐Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| |
Collapse
|
12
|
Fang X, Tan Y, Gu L, Ackermann L, Ma W. para
‐Selective Palladium‐Catalyzed C−H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem 2021. [DOI: 10.1002/cctc.202002056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universitaet Goettingen Tammannstraße 2 37077 Goettingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| |
Collapse
|
13
|
Fan WT, Li Y, Wang D, Ji SJ, Zhao Y. Iron-Catalyzed Highly para-Selective Difluoromethylation of Arenes. J Am Chem Soc 2020; 142:20524-20530. [PMID: 33252232 DOI: 10.1021/jacs.0c09545] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Direct functionalization of a C-H bond at either the meta or para position by only changing the catalyst system poses a significant challenge. We herein report the [Fe(TPP)Cl]-enabled, selective, C-H difluoromethylation of arenes using BrCF2CO2Et as the difluoromethylation source, which successfully altered the selectivity from the meta to the para position. A preliminary mechanistic study revealed the iron porphyrin complex not only activated the aromatic ring but also induced para selectivity due to the influence of ligand sterics.
Collapse
Affiliation(s)
- Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Yuting Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|