1
|
Carpentier R, Testa C, Pappalardo A, Jabin I, Bartik K. Binding of Bioactive Ammonium Ions in Water with a Cavity-Based Selectivity: Water Solubilization versus Micellar Incorporation. J Org Chem 2025; 90:682-690. [PMID: 39710974 DOI: 10.1021/acs.joc.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Many bioactive molecules contain primary ammonium groups, generating significant interest in developing selective receptors for ammonium ions. A promising strategy involves the use of polyaromatic cavitands to achieve size and shape selectivity through their cavity. However, designing effective receptors for ammonium ions in aqueous media is challenging due to the competitive nature of water. Calix[5]arenes are known to selectively bind primary ammonium ions over secondary, tertiary, and quaternary ammonium ions in organic solvents. Here, we report on the binding properties of a calix[5]arene, which bears carboxyl groups on its small rim, in organic solvents and aqueous media. This receptor was transferred in water either through deprotonation of its carboxyl groups or by incorporation into dodecylphosphocholine micelles. 1H Nuclear Magnetic Resonance data confirmed the endo complexation of various primary ammonium ions in not only organic solvents but also both aqueous media. Cavity-based selectivity was also observed, validating the cavitand strategy for the selective binding of ammonium ions in water. Unique binding properties, driven by the calix[5]arene's intrinsic recognition ability and the hydrophobic effect, were observed in water. Notably, binding affinities for dopamine and lysine derivatives with log Ka values of >3.9 were determined. The direct solubilization of the receptor outperformed micellar incorporation due to the hydrophilic nature of the primary ammonium ions, which hinders their uptake into micelles. These results offer promising perspectives for the development of efficient chemosensors for the characterization of bioactive ammonium ions in water.
Collapse
Affiliation(s)
- Romain Carpentier
- Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Caterina Testa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Kristin Bartik
- Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Seilkop AG, Odoh AS, Coradi NJ, Wright JI, Barroso J, Kim B. Ammonium-Binding Bifunctional Aza-Crown Ether Catalysts for Substrate-Selective Hydroxyl Functionalization. J Org Chem 2024; 89:13338-13344. [PMID: 39229859 DOI: 10.1021/acs.joc.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Herein, we describe a new bifunctional macrocyclic catalyst that employs multiple weak noncovalent interactions to enable substrate-selective O-silylation of ammonium alcohols over more reactive aliphatic alcohols with up to >20:1 substrate selectivity. Our catalytic strategy merges (i) the use of crown ethers as ammonium-binding receptors and (ii) the exploitation of N-methyl imidazole as a catalytic motif. Our collective mechanistic studies reveal the importance of receptor size, conformational preorganization, and the number of hydrogen-bonding acceptor units needed to achieve high selectivity within the macrocyclic binding pocket.
Collapse
Affiliation(s)
- Austin G Seilkop
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Amaechi S Odoh
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Nicholas J Coradi
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jacob I Wright
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jorge Barroso
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Lambert S, Carpentier R, Lepeintre M, Testa C, Pappalardo A, Bartik K, Jabin I. Development of a Cone Homooxacalix[3]arene-Based Fluorescent Chemosensor for the Selective Detection of Biogenic Ammonium Ions in Protic Solvents. J Org Chem 2024; 89:10903-10911. [PMID: 39034591 DOI: 10.1021/acs.joc.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We report here on the development of a fluorescent cone homooxacalix[3]arene-based receptor with a pyrene unit on the wide rim of the macrocycle (Ox3F) for the selective detection of primary ammonium ions, including those of biological importance. Ox3F was synthesized efficiently via an innovative strategy that enables the regio- and iteroselective wide rim functionalization of the readily available p-tBu-substituted homooxacalix[3]arene precursor. Nuclear magnetic resonance studies and in silico methods highlighted the endo-complexation of primary ammonium ions, including the protonated form of biogenic dopamine, tryptamine, serotonin, mexamine, and 3-iodothyronamine. The binding mode is similar for all guests with the ion deeply inserted into the polyaromatic cavity, enabling the NH3+ head to establish three hydrogen bonds with the ethereal oxygens of the macrocycle. Fluorescence quenching of the pyrene unit was observed following the π-π interaction between the pyrene moiety and the aromatic groups of serotonin, mexamine, and 3-iodothyronamine. No quenching was observed upon complexation of the smaller aromatic neurotransmitter dopamine as well as aliphatic amines and polyamines. This study presents a novel approach for biologically relevant ammonium ion chemosensing with ongoing efforts focused on translating these systems for aqueous environment applications.
Collapse
Affiliation(s)
- Simon Lambert
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Romain Carpentier
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Martin Lepeintre
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Caterina Testa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6 ,Catania 95125, Italy
| | - Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6 ,Catania 95125, Italy
- INSTM, UdR di Catania, Viale A. Doria 6 ,Catania 95125, Italy
| | - Kristin Bartik
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| |
Collapse
|
4
|
Gao Y, Guo J, Lai Y, Lin J, Liu J, Ji J, Yin P, Wang W, Zhao H, Chen G, Wang L, Fang X. Polyoxometalate-Organic Hybrid "Calixarenes" as Supramolecular Hosts. Angew Chem Int Ed Engl 2024; 63:e202315691. [PMID: 38038694 DOI: 10.1002/anie.202315691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Calixarenes are among the most useful and versatile macrocycles in supramolecular chemistry. The one thing that has not changed in the 80 years since their discovery, despite numerous derivatizations, is their fully organic, covalent scaffolds. Here, we report a new type of organic-inorganic hybrid "calixarenes" constructed by means of coordination-driven assembly. Replacing acetate ligands on the {SiW10 Cr2 (OAc)2 } clusters with 5-hydroxyisophthalates allows these 95° inorganic building blocks to be linked into bowl-shaped, hybrid "calix[n]arenes" (n=3, 4). With a large concave cavity, the metal-organic calix[4]arene can accommodate nanometer-sized polyoxoanions in an entropically driven process. The development of hybrid variants of calixarenes is expected to expand the scope of their physicochemical properties, guest/substrate binding, and applications on multiple fronts.
Collapse
Affiliation(s)
- Yuan Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ji Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jiaheng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junrui Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianming Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Liu YL, Wu LF, Wu C, Rahman S, Alodhayb A, Redshaw C, Georghiou PE, Yamato T. A facile and sensitive hexahomotrioxacalix[3]arene-based fluorescent sensor for the detection of trace amounts of 2,4,6-trinitrophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168209. [PMID: 37914116 DOI: 10.1016/j.scitotenv.2023.168209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Nitroaromatic compounds are common explosives and toxic pollutants, the selective and sensitive detection of which is of great importance. Herein, a facile and sensitive fluorescent sensor L was constructed for the sensing of TNP based on the hexahomotrioxacalix[3]arene skeleton. The fluorescence emission of L was drastically quenched in the presence of 2,4,6-trinitrophenol (TNP), while other tested NACs, metal ions, and anions induced negligible changes. Under the optimized conditions, the spectroscopic studies revealed that L exhibited extremely sensitive and selective TNP recognition, with a detection limit of 9.17 × 10-7 M and a quenching constant of 2.44 × 104 M-1. The sensitivity of sensor L for TNP was attributed to the formation of a ground-state charge-transfer complex and an inner filter effect, which also contributed to the special selectivity of the sensor among the various nitroaromatic analogues. Compared with previous reports, L can serve as a highly efficient sensor for the sensing of TNP and can be employed over a wide pH range of 2 to 12. Sensor L was effectively used to quantify TNP in real water and soil samples. Additionally, fluorescent test strips were also developed for visual and rapid detection of TNP in both the solution and vapour phases.
Collapse
Affiliation(s)
- Yong-Lang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lu-Fang Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chong Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, The University of Hull, Hull HU6 7RX, UK
| | - Paris E Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John's A1B3X7, Canada.
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
6
|
Carpentier R, Lambert S, Brunetti E, Jabin I, Bartik K. Specific Binding of Primary Ammoniums in Aqueous Media by Homooxacalixarenes Incorporated into Micelles. J Org Chem 2022; 87:12749-12758. [PMID: 36149399 DOI: 10.1021/acs.joc.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of artificial receptors for efficient recognition of analytes in water is a challenging task. Homooxacalix[3]arene-based receptor 1, which is selective toward primary ammoniums in organic solvents, was transferred into water following two different strategies: direct solubilization and micellar incorporation. Extensive 1H NMR studies showed that recognition of ammoniums is only observed in the case of micellar incorporation, highlighting the beneficial effect of the microenvironment of the micellar core. The selectivity of the system for primary ammoniums over secondary and tertiary ones was also maintained. The hydrophobic effect plays an important role in the recognition properties, which are counterion-dependent due to the energy penalty for the dissociation of certain ammonium salts in the apolar micellar core. This study shows that the straightforward self-assembly process used for the encapsulation of artificial receptors in micelles is an efficient strategy for developing water-soluble nanosized supramolecular recognition systems.
Collapse
Affiliation(s)
- Romain Carpentier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Simon Lambert
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Emilio Brunetti
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
7
|
Miranda AS, Marcos PM, Ascenso JR, Berberan-Santos MN, Menezes F. Anion Binding by Fluorescent Ureido-Hexahomotrioxacalix[3]arene Receptors: An NMR, Absorption and Emission Spectroscopic Study. Molecules 2022; 27:3247. [PMID: 35630730 PMCID: PMC9142983 DOI: 10.3390/molecules27103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescent receptors (4a-4c) based on (thio)ureido-functionalized hexahomotrioxacalix[3]arenes were synthesised and obtained in the partial cone conformation in solution. Naphthyl or pyrenyl fluorogenic units were introduced at the lower rim of the calixarene skeleton via a butyl spacer. The binding of biologically and environmentally relevant anions was studied with NMR, UV-vis absorption, and fluorescence titrations. Fluorescence of the pyrenyl receptor 4c displays both monomer and excimer fluorescence. The thermodynamics of complexation was determined in acetonitrile and was entropy-driven. Computational studies were also performed to bring further insight into the binding process. The data showed that association constants increase with the anion basicity, and AcO-, BzO- and F- were the best bound anions for all receptors. Pyrenylurea 4c is a slightly better receptor than naphthylurea 4a, and both are more efficient than naphthyl thiourea 4b. In addition, ureas 4a and 4c were also tested as ditopic receptors in the recognition of alkylammonium salts.
Collapse
Affiliation(s)
- Alexandre S. Miranda
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal;
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Paula M. Marcos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal;
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José R. Ascenso
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Mário N. Berberan-Santos
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Filipe Menezes
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany;
| |
Collapse
|
8
|
Hansen PE. Isotope Effects on Chemical Shifts in the Study of Hydrogen Bonds in Small Molecules. Molecules 2022; 27:2405. [PMID: 35458603 PMCID: PMC9026942 DOI: 10.3390/molecules27082405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
This review is giving a short introduction to the techniques used to investigate isotope effects on NMR chemical shifts. The review is discussing how isotope effects on chemical shifts can be used to elucidate the importance of either intra- or intermolecular hydrogen bonding in ionic liquids, of ammonium ions in a confined space, how isotope effects can help define dimers, trimers, etc., how isotope effects can lead to structural parameters such as distances and give information about ion pairing. Tautomerism is by advantage investigated by isotope effects on chemical shifts both in symmetric and asymmetric systems. The relationship between hydrogen bond energies and two-bond deuterium isotope effects on chemical shifts is described. Finally, theoretical calculations to obtain isotope effects on chemical shifts are looked into.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
9
|
Warnock TMC, Rajkumar S, Fitzpatrick MP, Serpell CJ, Dingwall P, Knipe PC. Chiral, sequence-definable foldamer-derived macrocycles. Chem Sci 2021; 12:15632-15636. [PMID: 35003593 PMCID: PMC8654020 DOI: 10.1039/d1sc05021d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Nature's oligomeric macromolecules have been a long-standing source of inspiration for chemists producing foldamers. Natural systems are frequently conformationally stabilised by macrocyclisation, yet this approach has been rarely adopted in the field of foldamer chemistry. Here we present a new class of chiral cyclic trimers and tetramers formed by macrocyclisation of open-chain foldamer precursors. Symmetrical products are obtained via a [2 + 2] self-assembly approach, while full sequence control is demonstrated through linear synthesis and cyclisation of an unsymmetrical trimer. Structural characterisation is achieved through a combined X-ray and DFT approach, which indicates the tetramers adopt a near-planar conformation, while the trimers adopt a shallow bowl-like shape. Finally, a proof-of-concept experiment is conducted to demonstrate the macrocycles' capacity for cation binding. Dipole-controlled pre-organization enables the cyclization of sequence-defined foldamers into macrocycles. The structure and properties of trimeric and tetrameric macrocycles are explored, and their ability to bind cationic guests is demonstrated.![]()
Collapse
Affiliation(s)
- Toyah M C Warnock
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | | | - Matthew P Fitzpatrick
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | - Christopher J Serpell
- School of Physical Sciences, University of Kent Ingram Building Canterbury Kent CT2 7NH UK
| | - Paul Dingwall
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| |
Collapse
|
10
|
Sanchez-Andrada P, Vidal-Vidal A, Prieto T, Elguero J, Alkorta I, Marin-Luna M. Alkylammonium Cation Affinities of Nitrogenated Organobases: The Roles of Hydrogen Bonding and Proton Transfer. Chempluschem 2021; 86:1097-1105. [PMID: 34251758 DOI: 10.1002/cplu.202100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Alkylammonium cation affinities of 64 nitrogen-containing organobases, as well as the respective proton transfer processes from the alkylammonium cations to the base, have been computed in the gas phase by using DFT methods. The guanidine bases show the highest proton transfer values (191.9-233 kJ mol-1 ) whereas the cis-2,2'-biimidazole presents the largest affinity towards the alkylammonium cations (>200 kJ mol-1 ) values. The resulting data have been compared with the experimentally reported proton affinities of the studied nitrogen-containing organobases revealing that the propensity of an organobase for the proton transfer process increases linearly with its proton affinity. This work can provide a tool for designing senors for bioactive compounds containing amino groups that are protonated at physiological pH.
Collapse
Affiliation(s)
- Pilar Sanchez-Andrada
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| | - Angel Vidal-Vidal
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - Tania Prieto
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - José Elguero
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
11
|
Islam MM, Georghiou PE, Rahman S, Yamato T. Calix[3]arene-Analogous Metacyclophanes: Synthesis, Structures and Properties with Infinite Potential. Molecules 2020; 25:E4202. [PMID: 32937796 PMCID: PMC7571185 DOI: 10.3390/molecules25184202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Calixarene-analogous metacyclophanes (CAMs) are a special class of cyclophanes that are cyclic polyaromatic hydrocarbons containing three or more aromatic rings linked by one or more methylene bridging groups. They can be considered to be analogues of calixarenes, since, in both types of molecules, the component aromatic rings are linked by methylene groups, which are meta to each other. Since the prototype or classical calix[4]arene consists of four benzene rings each linked by methylene bridges, which are also meta to each other, it can be considered to be an example of a functionalized [1.1.1.1]metacyclophane. A metacyclophane (MCP) that consists of three individual hydroxyl-group functionalized aromatic rings linked by methylene groups, e.g., a trihydroxy[1.1.1]MCP may therefore, by analogy, be termed in the broadest sense as a "calix[3]arene" or a "calix[3]arene-analogous metacyclophane". Most of the CAMs reported have been synthesized by fragment coupling approaches. The design, synthesis and development of functionalized CAMs, MCPs, calixarenes and calixarene analogues has been an area of great activity in the past few decades, due their potential applications as molecular receptors, sensors and ligands for metal binding, and for theoretical studies, etc. In this review article, we focus mainly on the synthesis, structure and conformational properties of [1.1.1]CAMs, i.e., "calix[3]arenes" and their analogues, which contain three functionalized aromatic rings and which provide new scaffolds for further explorations in supramolecular and sensor chemistry.
Collapse
Affiliation(s)
- Md. Monarul Islam
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh;
| | - Paris E. Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Shofiur Rahman
- Aramco Laboratory for Applied Sensing Research, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-Machi 1, Saga 840-8502, Japan;
| |
Collapse
|