1
|
Chen T, Huang T, Ye M, Shen J. Acid-Catalyzed, Metal- and Oxidant-Free C=C Bond Cleavage of Enaminones: One-Pot Synthesis of 3,4-Dihydroquinazolines. Molecules 2025; 30:350. [PMID: 39860220 PMCID: PMC11767836 DOI: 10.3390/molecules30020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C-N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance.
Collapse
Affiliation(s)
- Ting Chen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| | - Ting Huang
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Moudan Ye
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Jinhai Shen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
2
|
Mamedov VA, Zhukova NA, Syakaev VV, Gubaidullin AT, Samigullina AI, Beschastnova TN, Perevalova DS, Babaeva OB, Rizvanov IDK, Sinyashin OG. AcOH-Catalyzed Rearrangements of Benzo[ e][1,4]diazepin-2(and 3)-ones: Easy Access to 1,4-Dihydroquinazolines and Their Condensed Analogues. J Org Chem 2024; 89:14577-14585. [PMID: 39297490 DOI: 10.1021/acs.joc.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Presented herein is a novel synthesis of new 2-(quinolin-4-yl)-1,4-dihydroquinazoline systems 8, in which the acid-catalyzed rearrangement of spiro[benzo[e][1,4]diazepine-3,4'-quinolin]-2(1H)-ones generated in situ from 3-(2-aminophenyl)-5H-benzo[e][1,4]diazepin-2(1H)-ones 6 with acetone and alkylmethyl ketones has been realized as an important step. An attempt to synthesize isomeric 2-(2-aminophenyl)-5H-benzo[e][1,4]diazepin-3(4H)-one 6'a by hydrolysis of the corresponding N-{2-[5H-benzo[e][1,4]diazepin-3(4H)-on-2-yl]phenyl}acetamide 5'a led to a new heterocyclic system, 6-methyl-8,13-dihydro-13aH-quinazolino[4,3-b]quinazolin-5-ium 13a-carboxylate 14, as a result of an unexpected rearrangement. In addition, it is noteworthy that during the hydrolysis of N-{2-[5H-benzo[e][1,4]diazepin-2(1H)-on-3-yl]phenyl}acetamides 5, the not previously described 14-dihydro-5H-14,5a-(epimino[1,2]benzo)benzo[5,6][1,4]diazepin[2,1-b]quinazolin-6(7H)-ones 7 were unexpectedly obtained.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Nataliya A Zhukova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Victor V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Aida I Samigullina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Tat'yana N Beschastnova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Darya S Perevalova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Olga B Babaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Il Dar Kh Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| |
Collapse
|
3
|
Carlson HM, Smith SR, Mosey RA. Direct Formation of C-C, C-N, and C-O Bonds in Dihydroquinazolines via Hypervalent Iodine(III)-Mediated sp 3 C-H Functionalization. J Org Chem 2024. [PMID: 38165125 DOI: 10.1021/acs.joc.3c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A hypervalent iodine(III)-mediated cross-dehydrogenative coupling reaction for the direct formation of C-C, C-N, and C-O bonds in dihydroquinazolines has been developed. This one-pot method allows for the synthesis of C4-disubstituted dihydroquinazolines as well as C4-spirolactam, spirolactone, and spiroindene dihydroquinazolines in moderate to high yields.
Collapse
Affiliation(s)
- Haley M Carlson
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| | - Sydney R Smith
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| | - R Adam Mosey
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| |
Collapse
|
4
|
Xiong J, He HT, Yang HY, Zeng ZG, Zhong CR, Shi H, Ouyang ML, Tao YY, Pang YL, Zhang YH, Hu B, Fu ZX, Miao XL, Zhu HL, Yao G. Synthesis of 4-Tetrazolyl-Substituted 3,4-Dihydroquinazoline Derivatives with Anticancer Activity via a One-Pot Sequential Ugi-Azide/Palladium-Catalyzed Azide-Isocyanide Cross-Coupling/Cyclization Reaction. J Org Chem 2022; 87:9488-9496. [PMID: 35881945 DOI: 10.1021/acs.joc.2c00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new one-pot preparation of 4-tetrazolyl-3,4-dihydroquinazolines has been reported. The Ugi-azide reactions of 2-azidobenzaldehydes, amines, trimethylsilyl azide, and isocyanides produced azide intermediates without separation, which were treated with isocyanides to give 4-tetrazolyl-3,4-dihydroquinazoline derivatives through a sequential Palladium-catalyzed azide-isocyanide cross-coupling/cyclization reaction in moderate to good yields. The biological evaluation demonstrated that compound 6c inhibited breast cancer cells well and displayed broad applications for synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Jun Xiong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hui-Ting He
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - He-Yu Yang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Cheng-Ran Zhong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hang Shi
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Meng-Ling Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yuan-Yuan Tao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yong-Long Pang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yang-Hong Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Bo Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Zi-Xiang Fu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Xiao-Lei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Gang Yao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| |
Collapse
|
5
|
Asahara H, Bonkohara A, Takagi M, Iwai K, Ito A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Development of a synthetic equivalent of α,α-dicationic acetic acid leading to unnatural amino acid derivatives via tetrafunctionalized methanes. Org Biomol Chem 2022; 20:2282-2292. [PMID: 35234775 DOI: 10.1039/d1ob02482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diethyl mesoxalate (DEMO) exhibits high electrophilicity and accepts the nucleophilic addition of a less nucleophilic acid amide to afford N,O-hemiacetal. However, our research showed that elimination of the amide moiety proceeded more easily than dehydration upon treatment with a base. This problem was overcome by reacting DEMO with an acid amide in the presence of acetic anhydride to efficiently obtain N,O-acetal. Acetic acid was eliminated leading to the formation of N-acylimine in situ upon treatment with the base. N-Acylimine is also electrophilic, accepting the second nucleophilic addition by pyrrole or indole to form α,α-disubstituted malonates. Subsequent hydrolysis followed by decarboxylation resulted in (α-indolyl-α-acylamino)acetic acid formation; homologs of tryptophan. Through this process, DEMO serves as a synthetic equivalent of α,α-dicationic acetic acid to facilitate nucleophilic introduction of the two substituents.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Atsushi Bonkohara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Masaya Takagi
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Kento Iwai
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
6
|
Zhao L, Yang ML, Liu M, Ding MW. New efficient synthesis of polysubstituted 3,4-dihydroquinazolines and 4 H-3,1-benzothiazines through a Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution sequence. Beilstein J Org Chem 2022; 18:286-292. [PMID: 35330780 PMCID: PMC8919415 DOI: 10.3762/bjoc.18.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
A new efficient synthesis of polysubstituted 3,4-dihydroquinazolines and 4H-3,1-benzothiazines via sequential Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution reaction has been developed. The three-component Passerini reactions of 2-azidobenzaldehydes 1, benzoic acid (2), and isocyanides 3 produced the azide intermediates 4, which were treated sequentially with triphenylphosphine, isocyanates (or CS2), and secondary amines to give polysubstituted 3,4-dihydroquinazolines 8 and 4H-3,1-benzothiazines 11 in good overall yields through consecutive Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution reactions.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Mao-Lin Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Min Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
7
|
Long Z, Maolin Y, Haoran C, Mingwu D. One-Pot Three-Component Synthesis of 3,4-Dihydroquinazoline Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|