1
|
Das KK, Hajra A. Non-directed oxidative annulation of 2-arylindazoles with electron deficient olefins via visible light photocatalysis. Chem Commun (Camb) 2024; 60:10402-10405. [PMID: 39224066 DOI: 10.1039/d4cc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new visible-light-mediated non-directed oxidative annulation between 2-arylindazoles and electron-deficient olefins using commercially available piperidine-1-sulfonyl chloride as the radical precursor to afford fused 5,6-dihydroindazolo[2,3-a]quinolines has been developed under mild reaction conditions. This transformation occurs via two consecutive C-H bond functionalizations. The mechanistic investigation results indicate that the reaction progresses through a radical pathway forming a 2-(2-aryl-2H-indazol-3-yl)-3-piperidin-1-ylsulfonyl derivative as an intermediate.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
2
|
Bhattacharjee S, Hajra A. Skeletal Editing through Molecular Recombination of 2H-Indazoles to Azo-Linked-Quinazolinones. Chemistry 2024; 30:e202303240. [PMID: 38019105 DOI: 10.1002/chem.202303240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
A new protocol by the combinatory use of two equivalent of indazoles starting material with one being the carbon source via its C3-reactivity and the other, the coupling partner has been developed for the selectfluor-mediated single atom skeletal editing of 2H-indazoles. The azo-linked-2,3-disubstituted quinazolin-4-one derivatives were obtained through a carbon atom insertion between the two nitrogens of the indazole ring and simultaneous oxidation at C3 position of both indazole moieties. Mechanistic investigations reveal that the amidic carbonyl oxygen of the product is derived from water and the reaction proceeds through in-situ generated N-centred indazolone radical intermediate.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
3
|
Kanta Das K, Kumar Ghosh A, Hajra A. One-Pot Manganese (I)-Catalyzed Oxidant-Controlled Divergent Functionalization of 2-Arylindazoles. Chemistry 2024; 30:e202302849. [PMID: 37870380 DOI: 10.1002/chem.202302849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The oxidant-controlled divergent synthesis of C-2' formyl 2H-indazoles and indazoloindazolediones has been developed through Mn(I)- catalyzed ortho C-H functionalization of 2H-indazoles with para-formaldehyde to afford C-2' hydroxymethylated 2H-indazoles and subsequently oxidation with varying the amount of DDQ in one-pot. By employing selectfluor as the oxidant instead of DDQ, this reaction exclusively provided indazolebenzoxazine derivatives. This strategy delivered unsymmetrical indazoloindazoledione and indazolobenzoxazine with varied functional group tolerance in moderate to good yields.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| |
Collapse
|
4
|
Zhang G, Zhang C, Tian Y, Chen F. Fe-Catalyzed Direct Synthesis of Nitriles from Carboxylic Acids with Electron-Deficient N-Cyano- N-aryl-arylsulfonamide. Org Lett 2023; 25:917-922. [PMID: 36730786 DOI: 10.1021/acs.orglett.2c04185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Established carboxylic acids to nitriles conversion methods suffer from expensive catalysts, tedious steps, high temperatures (>200 °C), high pressure, or a narrow substrate range. Herein, we demonstrate a concise and efficient access to diverse nitrile compounds from ubiquitous carboxylic acids with electron-deficient N-cyano-N-aryl-arylsulfonamide (NCAS) in moderate to excellent yields. This strategy is promoted by an inexpensive iron catalyst and is generally compatible with primary, secondary, tertiary, and aryl carboxylic acids, as well as a variety of functional groups.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| |
Collapse
|
5
|
Wang C, Ma Z, Hou X, Yang L, Chen Y. Research and Application of N-Ts Cyanamides in Organic Synthesis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|
7
|
Sharma R, Chaudhary S. Regiodivergent Cu-Promoted, AcOH-Switchable Distal Versus Proximal Direct Cyanation of 1-Aryl-1 H-indazoles and 2-Aryl-2 H-indazoles via Aerobic Oxidative C-H Bond Activation. J Org Chem 2022; 87:16188-16203. [PMID: 36417354 DOI: 10.1021/acs.joc.2c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A copper-promoted regiodivergent, AcOH-switchable, distal and proximal direct cyanation of N-aryl-(1H/2H)-indazoles via aerobic oxidative C(sp2)-H bond activation has been developed. The inclusion or exclusion of AcOH as an additive is the foremost cause for the positional switch in the C-CN bond formation method that results in (C-2')-cyanated 2-aryl-2H-indazoles 3a-j, (C-2')-cyanated 1-aryl-1H-indazoles 4a-j [distal], or C-3 cyanated 2-aryl-2H-indazoles 5a-i [proximal] products in good to excellent yields and showed various functional group tolerance. The cyanide (CN-) ion surrogate was generated via the unification of dimethylformamide and ammonium iodide (NH4I). The utilization of molecular oxygen (aerobic oxidative strategy) as a clean and safe oxidant is liable for generous value addition. The further pertinence of the developed protocol has been demonstrated by transforming the synthesized cyanated product into numerous other functional groups, which will, undoubtedly, accomplish utilization in the synthetic area of biologically important compounds and medicinal chemistry.
Collapse
Affiliation(s)
- Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.,Laboratory of Bioactive Heterocycles and Catalysis, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
8
|
Yang Z, Yu JT, Pan C. Recent advances in C-H functionalization of 2 H-indazoles. Org Biomol Chem 2022; 20:7746-7764. [PMID: 36178474 DOI: 10.1039/d2ob01463g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2H-Indazoles are one class of the most important nitrogen-containing heterocyclic compounds. The 2H-indazole motif is widely present in bioactive natural products and drug molecules that exhibit distinctive bioactivities. Therefore, much attention has been paid to access diverse 2H-indazole derivatives. Among them, the late-stage functionalization of 2H-indazoles via C-H activation is recognized as an efficient approach for increasing the complexity and diversity of 2H-indazole derivatives. In this review, we summarized recent achievements in the late-stage functionalization of 2H-indazoles, including the C3-functionalization of 2H-indazoles through transition metal-catalyzed C-H activation or a radical pathway, transition metal-catalyzed ortho C2'-H functionalization of 2H-indazoles and remote C-H functionalization at the benzene ring in 2H-indazoles.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
9
|
Yuan C, Chen D, Pan C, Yu JT. Benzylic C-H Heteroarylation of 4-Methylphenols with 2H-Indazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
11
|
Das KK, Ghosh AK, Hajra A. Late-stage ortho-C-H alkenylation of 2-arylindazoles in aqueous medium by Manganese(i)-catalysis. RSC Adv 2022; 12:19412-19416. [PMID: 35865587 PMCID: PMC9251645 DOI: 10.1039/d2ra03547b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity. The reaction proceeds through the control of C3 nucleophilicity of 2-aryl indazoles. This method is applied to the late-stage functionalization of complex molecules including ethinylestradiol, norethisterone, and N-protected amino acid derivatives. The kinetic isotope studies suggest that the C–H bond activation step may not be the rate-determining step. Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity.![]()
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| |
Collapse
|
12
|
Wang B, Zhong X, Yao H, Deng R, Yan Z, Gao M, Sen L. Direct alkylation and acylation of 2H‐indazoles using aldehydes under metal‐free conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingqing Wang
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Xiaoyang Zhong
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Hua Yao
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Ruihong Deng
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Zhaohua Yan
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Mengjiao Gao
- Nanchang University Medical College: Medical College of Nanchang University department of medical CHINA
| | - Lin Sen
- Nanchang University Department of Chemistry Nangchang University 330000 Nangchang CHINA
| |
Collapse
|
13
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Li T, Zhu X, Jiang H, Wang Y, Zheng N, Peng T, Gao R, Shi L, Hao X, Song M. Pd‐catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tiantian Li
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xinju Zhu
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Hui Jiang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Yanong Wang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen China
| | - Tian Peng
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Rui Gao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Linlin Shi
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xin‐Qi Hao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Mao‐Ping Song
- College of Chemistry ZhengZhou University Zhengzhou China
| |
Collapse
|
15
|
Mao Q, Zhao Q, Li MZ, Qin R, Luo ML, Xue J, Chen BH, Leng HJ, Peng C, Zhan G, Han B. Construction of CF 3-Functionalized Fully Substituted Benzonitriles through Rauhut-Currier Reaction Initiated [3 + 3] Benzannulation. J Org Chem 2021; 86:14844-14854. [PMID: 34596408 DOI: 10.1021/acs.joc.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Though numerous cyanation reactions have been developed for the synthesis of benzonitriles, the construction of valuable fully substituted benzonitriles is still a challenging task. Herein, we reported a tertiary amine-catalyzed [3 + 3]-benzannulation for the green synthesis of CF3-functionalized fully substituted benzonitriles. This strategy features exclusive chemoselectivity, high atom-economy, and good step-economy with environment-friendly reagents and mild conditions. Unique triphenyl-substituted dicyanobenzoate products could be rapidly constructed using this method. The practicality and reliability of this reaction were proved by the successful scale-up synthesis. A mechanistic study indicates that the [3 + 3]-benzannulation was initiated by an intermolecular Rauhut-Currier reaction.
Collapse
Affiliation(s)
- Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Mu-Ze Li
- Department of Chemistry, University of British Columbia, Vabcouver, British Columbia V6T 1Z1, Canada
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
16
|
Rhodium-catalyzed directed C–H functionalization of 2-arylindazoles with diazotized Meldrum's acid. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hu W, Wang X, Yu X, Zhu X, Hao X, Song M. Rh(III)‐Catalyzed Divergent C2‐carboxymethylation of Indoles and C7‐formylmethylation of Indolines with Vinylene Carbonate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Weinan Hu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xu Wang
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xiaoni Yu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xinju Zhu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xin‐Qi Hao
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Mao‐Ping Song
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
18
|
Soumya PK, Vaishak TB, Saranya S, Anilkumar G. Recent advances in the rhodium‐catalyzed cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
19
|
Wang XY, Li Y, Shi L, Zhu X, Hao XQ, Song MP. Palladium-catalyzed C–H acetoxylation of 2-arylindazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Transition metal catalyzed C–H functionalization of arylindazoles: assembly of highly functionalized heterocycles (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02935-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Li Y, Wang XY, Ren X, Dou B, Zhu X, Hao XQ, Song MP. Iron-Mediated Selective Sulfonylmethylation of Aniline Derivatives with p-Toluenesulfonylmethyl Isocyanide (TosMIC). J Org Chem 2021; 86:7179-7188. [PMID: 33960194 DOI: 10.1021/acs.joc.1c00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-mediated highly selective C-H sulfonylmethylation of aniline derivatives with p-toluenesulfonylmethyl isocyanide in a mixture solvent of H2O and PEG400 under an Ar atmosphere has been realized. This transformation proceeds with operational convenience, use of earth-abundant metal catalyst and nontoxic media, broad substrate scope, and good functional group tolerance. The current methodology could be applied to the regioselective C-H sulfonylmethylation of indolines, tetrahydroquinolines, and tertiary anilines.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaohuang Ren
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Baoheng Dou
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
22
|
Zhan Y, Li Y, Tong J, Liu P, Sun P. Electrochemical Oxidative C−H Cyanation of Quinoxalin‐2(1
H
)‐ones with TMSCN. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yanling Zhan
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Yifan Li
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Jinwen Tong
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
23
|
Sun M, Zhou Y, Li L, Wang L, Ma Y, Li P. Electrochemically promoted C-3 amination of 2H-indazoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01088j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free and external oxidant-free method for the C-3 amination of 2H-indazoles in good yields was developed under electrochemical conditions.
Collapse
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- People's Republic of China
- Department of Chemistry
| | - Yuhui Zhou
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- People's Republic of China
| | - Laiqiang Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- People's Republic of China
- Department of Chemistry
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- People's Republic of China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| |
Collapse
|
24
|
Sun M, Li L, Wang L, Huo J, Sun M, Li P. Controllable chemoselectivity in the reaction of 2H-indazoles with alcohols under visible-light irradiation: synthesis of C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00592h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A high chemoselectivity in the visible-light-induced reaction of 2H-indazoles with alcohols controlled by the reaction atmosphere was achieved, providing C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes.
Collapse
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Jie Huo
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
25
|
Cheng HC, Guo PH, Ma JL, Hu XQ. Directing group strategies in catalytic sp2 C–H cyanations: scope, mechanism and limitations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00241d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Directing group strategy in transition metal catalyzed sp2 C–H bond cyanation has contributed to the direct conversion of hydrocarbons to cyano-containing compounds. Recent developments in transition metal-mediated sp2 C–H bond cyanation using this strategy are reviewed.
Collapse
Affiliation(s)
- Hui-cheng Cheng
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Peng-hu Guo
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Jiao-li Ma
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
26
|
Ghosh AK, Ghosh P, Hajra A. Rhodium-Catalyzed Directed C(sp 2)-H Bond Addition of 2-Arylindazoles to N-Sulfonylformaldimines and Activated Aldehydes. J Org Chem 2020; 85:15752-15759. [PMID: 33185096 DOI: 10.1021/acs.joc.0c02408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rhodium-catalyzed directed C-H functionalization of 2-arylindazoles with N-sulfonylformaldimines has been developed to provide a variety of N-benzylarylsulfonamide derivatives with good to excellent yields. Different activated aldehydes like ethyl glyoxalate and 2,2,2-trifluoroacetaldehyde also efficiently underwent nucleophilic addition with 2-arylindazoles. These selective transformations occur through the control of C3 nucleophilicity of indazole moiety. Mechanistic studies suggest that C-H activation step may be a rate-limiting step.
Collapse
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
27
|
Rh(III)-catalyzed C–H acylmethylation of 2H-indazoles with sulfoxonium ylides. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|