1
|
Chen X, Sun J, Han Y, Yan CG. Synthetic Protocol for Pyrido[2,3- c]pyridazine and Pyrido[3,2- e][1,2]oxazine Scaffolds via a [4 + 2] Cycloaddition Reaction. J Org Chem 2025; 90:2889-2906. [PMID: 39951356 DOI: 10.1021/acs.joc.4c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Here, we revealed a convenient synthetic protocol for unique pyrido[2,3-c]pyridazine and pyrido[3,2-e][1,2]oxazine scaffolds with excellent regioselectvity and diastereoselectivity. The functionalized pyrido[2,3-c] pyridazines were successfully synthesized via a Cs2CO3-promoted [4 + 2] cycloaddition reaction of α-halogenated N-tosylhydrazones or N-acylhydrazones and 5,6-unsubstituted 1,4-dihydropyridines under mild conditions. Additionally, the similar base-promoted [4 + 2] cycloaddition reaction of α-chlorogenated oximes and 5,6-unsubstituted 1,4-dihydropyridines afforded functionalized pyrido[3,2-e][1,2]oxazines in satisfactory yields. The features of this reaction included mild reaction conditions, broad substrate scopes, high functional group tolerance, and significant atomic economy.
Collapse
Affiliation(s)
- Xiuyu Chen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Li Y, Kang Y, Xiao J, Zhang Z. Mechanism, Chemoselectivity, and Stereoselectivity of an NHC-Catalyzed Reaction of Aldehydes and Hydrazones: A DFT Study. J Phys Chem A 2024; 128:4483-4492. [PMID: 38785354 DOI: 10.1021/acs.jpca.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
To elucidate the mechanism and origins of chemo- and enantioselectivities of the reaction between aliphatic aldehydes and hydrazones catalyzed by triazolium-derived NHC, density functional theory computations have been performed. According to our calculated results, the whole catalytic cycle for the formation of dihydropyridazinones proceeds via the initial nucleophilic addition of NHC to an aliphatic aldehyde, followed by the concerted intramolecular proton transfer and C-Cl bond cleavage. Subsequent deprotonation generates an enolate intermediate. The enolate intermediate then undergoes 1,4-addition to hydrazone to construct a new carbon-carbon bond. The following ring-closure would lead to a six-membered ring intermediate, which, upon the release of NHC, affords the final product dihydropyridazinone. The computation results reveal that intramolecular proton transfer is significantly promoted by the Brønsted acid DIPEA·H+. The carbon-carbon bond formation step could determine not only the chemoselectivity but also the stereoselectivity and lead to the S-isomer product. It was found that the stereoselectivity arises from a combination of weak interactions, including C-H···O, C-H···N, C-H···π, and LP···π. NHC could enhance the nucleophilicity of the aliphatic aldehyde and facilitate further reaction with hydrazone. This work could be beneficial for the development of new catalytic strategies in the future.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Yanlong Kang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Junjie Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| |
Collapse
|
3
|
Koçak R, Güney M. One-Pot Synthesis of Polycyclic 4,5-Dihydropyridazine-3(2H)-ones by Inverse Electron-Demand Diels-Alder (IEDDA) Reactions from Alkenes. Chemistry 2023; 29:e202302096. [PMID: 37548107 DOI: 10.1002/chem.202302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
In the classical Inverse Electron-Demand Diels-Alder (IEDDA) reactions between alkenes and tetrazines, 4,5-dihydropyridazines are formed. 4,5-Dihydropyridazines are rapidly converted to the more energetically stable 1,4-dihydropyridazines by 1,3-prototropic isomerization. In this study, instead of 1,4-dihydropyridazines, 4,5-dihydropyridazine-3(2H)-ones were obtained as a result of IEDDA reactions between tetrazines with leaving groups at the 3,6-positions, and norbornene and barrelene-derived polycyclic alkenes in the presence of moisture in air or solvent. To show that this new method works not only on strained polycyclic alkenes but also on monocyclic and linear alkenes, the corresponding 4,5-dihydropyridazine-3(2H)-ones were obtained in high yields from the reactions performed with styrene and cyclopentene as well. The chemical structures of the polycyclic 4,5-dihydropyridazine-3(2H)-ones were determined by NMR and HRMS analyses. In addition, the exact structures of the polycyclic 4,5-dihydropyridazine-3(2H)-ones were also experimentally proven by converting them to pyridazine-3(2H)-ones known in the literature.
Collapse
Affiliation(s)
- Ramazan Koçak
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, 25240, Turkey
- Department of Chemistry, Faculty of Science and Art, Agri Ibrahim Cecen University, Agri, 04100, Turkey
| | - Murat Güney
- Department of Chemistry, Faculty of Science and Art, Agri Ibrahim Cecen University, Agri, 04100, Turkey
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, 04100, Turkey
| |
Collapse
|
4
|
Zhao J, Lei S, Wu M, Pang C, Li H. One-pot Synthesis of 2,6-Diaryl-4,5-dihydropyridazin-3(2H)-ones: Copper Catalyzed Annulation of Aldehydes, Arylhydrazines and 3-Acryloyloxazolidin-2-one. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
6
|
Pan B, Li A, Liu D, Ni Q, Liang W, Du F, Gu J, Ouyang Q. Highly diastereoselective synthesis of benzothiazolo[3,2- a]pyridines via [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones. Org Biomol Chem 2022; 20:4512-4517. [PMID: 35593711 DOI: 10.1039/d2ob00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient AgOTf-catalyzed [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones was successfully performed under mild reaction conditions. With this approach, a series of novel benzothiazolo[3,2-a]pyridine derivatives was readily obtained in good to excellent yields (68-96%), with high diastereoselectivities and tolerating quite a broad scope of substituents. By using chiral phosphoric acid catalyst, the desired products were obtained in high enantioselectivities, up to -94%. This methodology provides a rapid and useful method for constructing fused benzothiazole derivatives.
Collapse
Affiliation(s)
- Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Ao Li
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Dong Liu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - QingShan Ni
- Biomedical Analysis Center, School of Basic Medical Science, Third Military Medical University, Chongqing, 400038, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| |
Collapse
|
7
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. A facile protocol for the preparation of 2-carboxylated thieno [2,3- b] indoles: a de novo access to alkaloid thienodolin. Org Biomol Chem 2022; 20:4167-4175. [PMID: 35531860 DOI: 10.1039/d2ob00440b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free strategy, alternative to the known complex cycloaddition reactions, towards 2-carboxylated thieno [2,3-b] indole derivatives has been successfully developed. The novel approach involves as starting materials easy accessible 1,2-diaza-1,3-dienes and indoline 2-thione and requires mild reaction conditions. Furthermore, the easy work-up required makes this method amenable for a one-pot approach as demonstrated in the preparation of thienodolin, a natural product isolated from Streptomyces albogriseolus that exhibits valuable biological properties.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| |
Collapse
|
8
|
Shen LW, Zhang YP, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of α,β-Unsaturated Thioesters with In Situ-Generated 1,2-Diaza-1,3-dienes for the Synthesis of 1,3,4-Thiadiazines. J Org Chem 2022; 87:4232-4240. [PMID: 35212520 DOI: 10.1021/acs.joc.1c03072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly regioselective inverse electron-demand aza-Diels-Alder reaction of α,β-unsaturated thioesters with 1,2-diaza-1,3-dienes generated in situ from α-halogeno hydrazones was developed. With α,β-unsaturated thioesters as C═S dienophiles, the developed protocol enables the formation of diverse 3,6-dihydro-2H-1,3,4-thiadiazine derivatives in excellent yields. In the presence of lithium aluminum hydride, 3,6-dihydro-2H-1,3,4-thiadiazine derivatives could be further transformed into 5,6-dihydro-4H-1,3,4-thiadiazines in good yields.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
10
|
Aza-Diels-Alder reaction of both electron-deficient azoalkenes with electron-deficient 3-phencaylideneoxindoles and 3-aryliminooxindol-2-ones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Shen LW, Li TT, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of Cyclic Enamides with 1,2-Diaza-1,3-dienes in Situ Generated from α-Halogeno Hydrazones: Access to Fused Polycyclic Tetrahydropyridazine Derivatives. J Org Chem 2021; 86:11472-11481. [PMID: 34343003 DOI: 10.1021/acs.joc.1c00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient inverse electron-demand aza-Diels-Alder reaction of cyclic enamides and 1,2-diaza-1,3-dienes, which could be readily formed in situ from α-halogeno hydrazones and a base, has been successfully developed. With the developed approach, a wide range of fused polycyclic tetrahydropyridazines were smoothly obtained in up to 99% yield under benign reaction conditions. This reaction concept was also extended to acyclic enamide substrates for accessing 1,4,5,6-tetrahydropyridazines. A gram-scale experiment and further derivatizations of the polycyclic tetrahydropyridazine products were also conducted to verify the practicability of the methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Mondal B, Maiti R, Yang X, Xu J, Tian W, Yan JL, Li X, Chi YR. Carbene-catalyzed enantioselective annulation of dinucleophilic hydrazones and bromoenals for access to aryl-dihydropyridazinones and related drugs. Chem Sci 2021; 12:8778-8783. [PMID: 34257877 PMCID: PMC8246082 DOI: 10.1039/d1sc01891d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules. Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.![]()
Collapse
Affiliation(s)
- Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
13
|
Geng Y, Hua Y, Jia S, Wang M. Direct Asymmetric α‐Selective Mannich Reaction of β,γ‐Unsaturated Ketones with Cyclic α‐Imino Ester: Divergent Synthesis of Cyclocanaline and Tetrahydro Pyridazinone Derivatives. Chemistry 2021; 27:5130-5135. [DOI: 10.1002/chem.202100284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Yu‐Huan Geng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Yuan‐Zhao Hua
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Shi‐Kun Jia
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Min‐Can Wang
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| |
Collapse
|