1
|
Zhou X, Xu L, Ma Z, Cui J, Wang B. Mitsunobu reaction: assembling C-N bonds in chiral traditional Chinese medicine. RSC Adv 2025; 15:5167-5189. [PMID: 39963451 PMCID: PMC11831425 DOI: 10.1039/d4ra08573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The synthesis of chiral molecules has long been a central focus and challenge in medicinal chemistry research. The Mitsunobu reaction, developed by Japanese chemist Mitsunobu in 1967, is a widely utilized bimolecular nucleophilic substitution reaction that plays a vital role in synthesizing chiral natural products. In this reaction, alcohols react with nucleophilic reagents in the presence of a phosphine ligand to form an intermediate phosphonium salt. This intermediate enables the formation of various chemical bonds. The purpose of this review is to explore the applications of the Mitsunobu chemistry in constructing pivotal carbon-nitrogen bonds in traditional Chinese medicines (TCMs). Emphasis will be placed on the preparative synthetic applications of the Mitsunobu strategy as a key step in the total synthesis of naturally occurring biologically active products.
Collapse
Affiliation(s)
- Xue Zhou
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Liang Xu
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Zhanhui Ma
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Jin Cui
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Bin Wang
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine Hefei 230038 P. R. China
| |
Collapse
|
2
|
George DE, Tepe JJ. Total Synthesis of Nagelamide W. J Org Chem 2023; 88:9306-9312. [PMID: 37314002 DOI: 10.1021/acs.joc.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we report the total synthesis of nagelamide W (1), a pyrrole imidazole alkaloid of the nagelamide family isolated in 2013. The key approach in this work involves the construction of the 2-aminoimidazoline core of nagelamide W from alkene 6 through a cyanamide bromide intermediate. The synthesis of nagelamide W was accomplished with an overall yield of 6.0%.
Collapse
Affiliation(s)
- Dare E George
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
3
|
Chu MJ, Li M, Zhao Y. Dimeric pyrrole-imidazole alkaloids: sources, structures, bioactivities and biosynthesis. Bioorg Chem 2023; 133:106332. [PMID: 36773454 DOI: 10.1016/j.bioorg.2022.106332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pyrrole-imidazole alkaloids (PIAs) constitute a highly diverse and densely functionalized subclass of marine natural products. Among them, the uncommon dimeric PIAs with ornate molecular architectures, attractive biological properties and interesting biosynthetic origin have spurred a considerable interest of chemists and biologists. The present review comprehensively summarized 84 dimeric PIAs discovered during the period from 1981 to September 2022, covering their source organisms, chemical structures, biological activities as well as biosynthesis. For a better understanding, these structurally intricate PIA dimers are firstly classified and presented according to their carbon skeleton features as well as biosynthesis pathways. Furthermore, relevant summaries focusing on the source organisms and the associated bioactivities of these compounds belonging to different chemical classes are also provided, which will help elucidate the fascinating chemistry and biology of these unusual PIA dimers.
Collapse
Affiliation(s)
- Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Li
- Department of Pharmacy, Qingdao Central Hospital, Qingdao 266042, China
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Munawar S, Zahoor AF, Ali S, Javed S, Irfan M, Irfan A, Kotwica-Mojzych K, Mojzych M. Mitsunobu Reaction: A Powerful Tool for the Synthesis of Natural Products: A Review. Molecules 2022; 27:6953. [PMID: 36296545 PMCID: PMC9609662 DOI: 10.3390/molecules27206953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/13/2023] Open
Abstract
The Mitsunobu reaction plays a vital part in organic chemistry due to its wide synthetic applications. It is considered as a significant reaction for the interconversion of one functional group (alcohol) to another (ester) in the presence of oxidizing agents (azodicarboxylates) and reducing agents (phosphines). It is a renowned stereoselective reaction which inverts the stereochemical configuration of end products. One of the most important applications of the Mitsunobu reaction is its role in the synthesis of natural products. This review article will focus on the contribution of the Mitsunobu reaction towards the total synthesis of natural products, highlighting their biological potential during recent years.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- College of Agriculture and Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
5
|
Freire VF, Gubiani JR, Spencer TM, Hajdu E, Ferreira AG, Ferreira DAS, de Castro Levatti EV, Burdette JE, Camargo CH, Tempone AG, Berlinck RGS. Feature-Based Molecular Networking Discovery of Bromopyrrole Alkaloids from the Marine Sponge Agelas dispar. JOURNAL OF NATURAL PRODUCTS 2022; 85:1340-1350. [PMID: 35427139 PMCID: PMC9680911 DOI: 10.1021/acs.jnatprod.2c00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Investigation of the marine sponge Agelas dispar MeOH fractions using feature-based molecular networking, dereplication, and isolation led to the discovery of new bromopyrrole-derived metabolites. An in-house library of bromopyrrole alkaloids previously isolated from A. dispar and Dictyonella sp. was utilized, along with the investigation of an MS/MS fragmentation of these compounds. Our strategy led to the isolation and identification of the disparamides A-C (1-3), with a novel carbon skeleton. Additionally, new dispyrins B-F (4-8) and nagelamides H2 and H3 (9 and 10) and known nagelamide H (11), citrinamine B (12), ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) were also isolated and identified by analysis of spectroscopic data. Analysis of MS/MS fragmentation data and molecular networking analysis indicated the presence of hymenidin (16), oroidin (17), dispacamide (18), monobromodispacamide (19), keramadine (20), longamide B (21), methyl ester of longamide B (22), hanishin (23), methyl ester of 3-debromolongamide B (24), and 3-debromohanishin (25). Antibacterial activity of ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) was evaluated against susceptible and multi-drug-resistant ESKAPE pathogenic bacteria Klabsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterococcus faecalis. Dibromoageliferin (15) displayed the most potent antimicrobial activity against all tested susceptible and MDR strains. Compounds 13-15 presented no significant hemolytic activity up to 100 μM.
Collapse
Affiliation(s)
- Vítor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Tara M Spencer
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040, Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Dayana A S Ferreira
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Erica V de Castro Levatti
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Carlos Henrique Camargo
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Andre G Tempone
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
8
|
Herath AK, Lovely CJ. Pyrrole carboxamide introduction in the total synthesis of pyrrole-imidazole alkaloids. Org Biomol Chem 2021; 19:2603-2621. [PMID: 33683231 DOI: 10.1039/d0ob02052d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review various strategies for the incorporation of the signature pyrrole carboxamide moiety in the total syntheses of pyrrole-imidazole alkaloids (PIA) are discussed. These so-called oroidin alkaloids have a broad range of biological activities and display interesting skeletal diversity and complexity. These alkaloids are sponge-derived secondary metabolites and thus far more than 200 members of the PIA family have been isolated over the past few decades. Methods range from classical amide bond forming processes to non-traditional bond formation including the de novo synthesis of the pyrrole itself.
Collapse
Affiliation(s)
- Apsara K Herath
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | |
Collapse
|