1
|
Chai YX, Ren JJ, Li YM, Bai YC, Zhang QQ, Zhao YZ, Yang X, Zhang XH, Zhang XS, Wu AX, Zhu YP, Sun YY. 5-Aminopyrazole Dimerization: Cu-Promoted Switchable Synthesis of Pyrazole-Fused Pyridazines and Pyrazines via Direct Coupling of C-H/N-H, C-H/C-H, and N-H/N-H Bonds. Molecules 2025; 30:381. [PMID: 39860249 PMCID: PMC11767409 DOI: 10.3390/molecules30020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
A Cu-promoted highly chemoselective dimerization of 5-aminopyrazoles to produce pyrazole-fused pyridazines and pyrazines is reported. The protocol generates switchable products via the direct coupling of C-H/N-H, C-H/C-H and N-H/N-H bonds, with the merits of broad substrate scope and high functional group compatibility. Gram-scale experiments demonstrated the potential applications of this reaction. Moreover, the preliminary fluorescence results uncovered that dipyrazole-fused pyridazines and pyrazines may have some potential applications in materials chemistry.
Collapse
Affiliation(s)
- Yi-Xin Chai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Jun-Jie Ren
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Ming Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Cheng Bai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Qing-Qing Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Zhen Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xue Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xiao-Han Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xin-Shuang Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| |
Collapse
|
2
|
He J, Chang X, Zou C, Yu Y, Han S, Wu C, Ou S, Lu W, Li K. Tunable Yellow to Near-Infrared Fluorescent Boron-Amino-Chelating Complexes with Stokes Shifts >100 nm. J Org Chem 2023; 88:14836-14841. [PMID: 37779438 DOI: 10.1021/acs.joc.3c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A series of diphenylboron-chelating N-substituent 8-aminoquinoline, 5-aminoquinoxaline, and 1-aminophenazine were prepared. They exhibit lowest energy absorption peaks of 444-766 nm, emission peaks of 563-820 nm, and quantum yields of up to 46.5%. Electrochemical and theoretical studies indicate that the N-substituent mainly determines the HOMO and the framework determines the LUMO, thus allowing for a wide-tuning of absorptions/emissions. Intramolecular charge transfer transition leads to large Stokes shifts of up to 166 nm. One selected compound showed satisfactory cytocompatibility and cytoplasm-targeting cell imaging ability.
Collapse
Affiliation(s)
- Jiang He
- Colleges of Materials Sciences and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China
| | - Yanqin Yu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Shuang Han
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Cuifang Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Sha Ou
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, P. R. China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kai Li
- Colleges of Materials Sciences and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Boyet M, Chabaud L, Pucheault M. Recent Advances in the Synthesis of Borinic Acid Derivatives. Molecules 2023; 28:molecules28062660. [PMID: 36985634 PMCID: PMC10057197 DOI: 10.3390/molecules28062660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Borinic acids [R2B(OH)] and their chelate derivatives are a subclass of organoborane compounds used in cross-coupling reactions, catalysis, medicinal chemistry, polymer or optoelectronics materials. In this paper, we review the recent advances in the synthesis of diarylborinic acids and their four-coordinated analogs. The main strategies to build up borinic acids rely either on the addition of organometallic reagents to boranes (B(OR)3, BX3, aminoborane, arylboronic esters) or the reaction of triarylboranes with a ligand (diol, amino alcohol, etc.). After general practical considerations of borinic acids, an overview of the main synthetic methods, their scope and limitations is provided. We also discuss some mechanistic aspects.
Collapse
|
4
|
Yan M, Zhu L, Zhang X, Yin SF, Kambe N, Qiu R. Nickel-Catalyzed N, N-Diarylation of 8-Aminoquinoline with Large Steric Aryl Bromides and Fluorescence of Products. Org Lett 2021; 23:2514-2520. [PMID: 33724855 DOI: 10.1021/acs.orglett.1c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple and efficient methodology for the synthesis of large sterically hindered triarylamines in a single step was developed. A direct N,N-diarylation of 8-aminoquinoline with sterically hindered bromides, making use of inexpensive nickel as a catalyst and simple sodium salt as a base, gives the products in good to excellent yields. Various bromides and substituted 8-aminoquinolines are tolerated. Preliminary fluorescence results indicate that these sterically hindered and conjugated triarylamines may have some potential in material chemistry.
Collapse
Affiliation(s)
- Mingpan Yan
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Longzhi Zhu
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China.,Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xingxing Zhang
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Recent Progress on Synthesis of N, N'-Chelate Organoboron Derivatives. Molecules 2021; 26:molecules26051401. [PMID: 33807680 PMCID: PMC7961668 DOI: 10.3390/molecules26051401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
N,N′-chelate organoboron compounds have been successfully applied in bioimaging, organic light-emitting diodes (OLEDs), functional polymer, photocatalyst, electroluminescent (EL) devices, and other science and technology areas. However, the concise and efficient synthetic methods become more and more significant for material science, biomedical research, or other practical science. Here, we summarized the organoboron-N,N′-chelate derivatives and showed the different routes of their syntheses. Traditional methods to synthesize N,N′-chelate organoboron compounds were mainly using bidentate ligand containing nitrogen reacting with trivalent boron reagents. In this review, we described a series of bidentate ligands, such as bipyridine, 2-(pyridin-2-yl)-1H-indole, 2-(5-methyl-1H-pyrrol-2-yl)quinoline, N-(quinolin-8-yl)acetamide, 1,10-phenanthroline, and diketopyrrolopyrrole (DPP).
Collapse
|