1
|
Coto D, Mata S, López LA, Vicente R. Regiodivergent formal [4+2] cycloaddition of nitrosoarenes with furanyl cyclopropane derivatives as 4π components. Chem Commun (Camb) 2025; 61:1411-1414. [PMID: 39711365 DOI: 10.1039/d4cc05662k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cyclopropanes are commonly used as valuable 3-carbon building blocks. Herein, we disclose a different reactivity pattern of furanyl cyclopropanes, which serve as a 4-carbon component in Lewis acid-promoted [4+2] cycloadditions with nitrosoarenes to afford 1,2-oxazine derivatives. Importantly, the regioselectivity of the cycloaddition reaction can be controlled by the appropriate choice of the Lewis acid.
Collapse
Affiliation(s)
- Darío Coto
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Sergio Mata
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
| | - Luis A López
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Rúben Vicente
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| |
Collapse
|
2
|
Zhang Y, Deng G. Highly Diastereoselective Synthesis and Application of Functionalized 2,3-Dihydrofuran Derivatives from Enynones and Bis(diazo) Compounds. J Org Chem 2024; 89:80-90. [PMID: 38091516 DOI: 10.1021/acs.joc.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A highly efficient Ag(I)-catalyzed cascade Michael addition/cyclization of enynones with 1,3-(bis)diazo compounds has been established, providing functionalized 2,3-dihydrofuran derivatives containing a diazo group and an acetylenic bond with excellent diastereoselectivity. Transformation of the diazo group and hydration of the carbon-carbon triple bond have been performed successfully in different reaction systems.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Zhang Y, Deng G. Controllable Access to Diazo-functionalized 2-Methylene-2,3-dihydrofurans and Diazo-functionalized Furans from Enynones and Diazo Carbonyl Compounds. J Org Chem 2023. [PMID: 38051954 DOI: 10.1021/acs.joc.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Using enynones and diazo carbonyl compounds as identical starting materials, methods for chemoselective and regioselective constructs of diazo-functionalized 2-methylene-2,3-dihydrofurans and diazo-functionalized trisubstituted furans have been established in a AgSbF6/DBU/DCE/0 °C system and a AgSbF6/DBU/Et2O·BF3/DCE/0 °C system, respectively. A Lewis acid and organic base cocontrolled reaction for the synthesis of diazo-functionalized trisubstituted furans is infrequent. For diazo-functionalized 2-methylene-2,3-dihydrofuran synthesis, the reaction possesses excellent diastereoselectivity and Z-selectivity. On the basis of Rh2(OAc)4-mediated unique decomposition of diazo-functionalized 2-methylene-2,3-dihydrofurans, an application to diastereoselective construction of a 5-methylene-4,7-dihydro-5H-furo[2,3-c]pyran frame has been achieved for the first time.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
4
|
Peng H, Zhang Y, Deng G. Silver(I)-Catalyzed Tandem Reaction of Enynones and 4-Alkenyl Isoxazoles: Synthesis of 2-(Furan-2-yl)-1,2-dihydropyridines. J Org Chem 2023. [PMID: 37183921 DOI: 10.1021/acs.joc.3c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silver(I)-catalyzed tandem reaction of enynones with 4-alkenyl isoxazoles provides access to 2-(furan-2-yl)-1,2-dihydropyridines. No competitive cyclopropanation of alkenes and O-H insertion via (2-furyl)carbene complexes were observed. The cascade reaction proceeds via the formation of (2-furyl)metal carbene intermediate, the N-O bond cleavage of 4-alkenyl isoxazoles/rearrangement, subsequent 6π electrocyclic reaction, and [1,5] H-shift. The successive construction of both 1,2-dihydropyridine skeleton and furan frame has been achieved in the one-pot reaction. A broad range of readily available enynones and 4-alkenyl isoxazoles are suitable to this protocol; however, when R3 is the alkyl group such as n-Bu and Me, a complicated mixture was generated without the desired products. In addition, in the case of R4 = bulky group such as R3'SiOCH2, the reaction gave an in situ oxo-product of (2-furyl)silver carbene. An atom-economic strategy for the synthesis of 2-(furan-2-yl)-1,2-dihydropyridines has been established.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
Liu D, Lu X, Chai Z, Yang H, Sun Y, Yu F. Progress in Construction of 2 H-Pyrrol-2-ones Skeleton. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Dattatri, Singam MKR, Nanubolu JB, Reddy MS. Cu-Catalyzed tandem cyclization and coupling of enynones with enaminones for multisubstituted furans & furano-pyrroles. Org Biomol Chem 2022; 20:6363-6367. [PMID: 35861157 DOI: 10.1039/d2ob00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy that efficiently constructs complex molecular diversity in a few steps will always be embraced by organic chemists. Here, we report a cascade reaction of enynones with enaminones via carbene insertion and aryl migration to engineer distinctive multisubstituted furans with an all-carbon quaternary center, and could extend the protocol in the same pot towards furano-pyrrole bis-heterocycles. Heterogeneity of this protocol was proved with the upshot of divergent chemical space under a relatively mild reaction environment.
Collapse
Affiliation(s)
- Dattatri
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
7
|
Tao S, Xu L, Yang K, Zhang J, Du Y. Construction of the 2-Amino-1,3-selenazole Skeleton via PhICl 2/KSeCN-Mediated Selenocyanation/Cyclization. Org Lett 2022; 24:4187-4191. [PMID: 35670516 DOI: 10.1021/acs.orglett.2c01468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The construction of 2-amino-1,3-selenazole skeleton was realized via the PhICl2/KSeCN-enabled electrophilic selenocyanation of β-enaminones and β-enamino esters followed by intramolecular cyclization under basic conditions. Compared to the classical Hantzsch strategy that utilizes selenourea or its analogues as starting materials or crucial intermediates, this method might represent an alternative approach for the assembly of 1,3-selenazole framework through a different pathway.
Collapse
Affiliation(s)
- Shanqing Tao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyue Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianing Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Odin IS, Chertov AY, Grigor'eva OB, Golovanov AA. Ketone Derivatives of Propargylamines as Synthetic Equivalents of Conjugated 2,4,1-Enynones in the Synthesis of Acetylenic 2-Pyrazolines and Pyrazoles. J Org Chem 2022; 87:5916-5924. [PMID: 35394780 DOI: 10.1021/acs.joc.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An interaction of 1,5-diaryl-3-X-pent-4-yn-1-ones (where X stands for piperidin-1-yl, morpholin-4-yl, 4-methylpiperazin-1-yl) with arylhydrazines proceeds at room temperature and results in 3-aryl-5-arylethynyl-1-phenyl-4,5-dihydro-1H-pyrazoles with up to 57-73% yields. Under similar conditions, the cyclocondensation of conjugated 2,4,1-enynones with arylhydrazine proceeds only in the presence of cyclic amines. 1,5-Diaryl-3-X-pent-4-yn-1-ones are reported as synthetic equivalents of conjugated 2,4,1-enynones in reactions with arylhydrazines. On the basis of obtained data, there are highly efficient methods developed for the synthesis of 5-arylethynyl-substituted 4,5-dihydro-1H-pyrazoles, as well as for similarly structured 1H-pyrazoles prepared by oxidation in AcOH. Presented products possess quite marked fluorescent abilities. Emission maximum wavelengths are located at 453-465 and 363-400 nm, respectively; certain compounds show extremely large Stokes shifts that may reach 91,000 cm-1.
Collapse
Affiliation(s)
- Ivan S Odin
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | - Anton Yu Chertov
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | - Olga B Grigor'eva
- Togliatti State University, 14 Belorusskaya Str., 445020 Togliatti, Russia
| | | |
Collapse
|
9
|
Wan Y, Zhu Y, Peng H, Deng G. Preparation of 4-(Nitromethyl)furan Derivatives and Their Application in the Syntheses of Bis(furan-2-yl)oximes. J Org Chem 2021; 87:281-293. [PMID: 34902975 DOI: 10.1021/acs.joc.1c02359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the preparation of tetrasubstituted furans, which contains a nitromethyl group at the 4-position, has been developed. The applications of 4-(nitromethyl)furans on the synthesis of highly functionalized bis(furyl)oxime were explored for the first time.
Collapse
Affiliation(s)
- Yinbo Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Li N, Xu S, Wang X, Xu L, Qiao J, Liang Z, Xu X. Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ni H, He X, Zhong K, Chen H, Lai W, Zhao Z, Zeng Z, Bai R, Lan Y. Oxymetalation or oxidative cyclization? mechanism of Pd-catalyzed annulation of enynones. Chem Commun (Camb) 2021; 57:8316-8319. [PMID: 34319338 DOI: 10.1039/d1cc02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enynones are powerful synthons for constructing furan derivatives in the presence of transition metal catalysts. Unlike the conventional intramolecular nucleophilic attack with the activation of coinage metals, we propose that enynones undergo an oxidative cyclization process with a Pd(0) species. The full catalytic cycle involves oxidative cyclization, isocyanide insertion, and reductive elimination, which was supported by DFT calculations. Geometric and electronic analyses confirmed the oxidative cyclization process, which proceeds via a Pd(ii) intermediate.
Collapse
Affiliation(s)
- Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang K, Liu Z, Xu G, Shao Y, Tang S, Chen P, Zhang X, Sun J. Chemo‐ and Enantioselective Insertion of Furyl Carbene into the N−H Bond of 2‐Pyridones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road 213164 Changzhou China
| | - Ziye Liu
- Shenzhen Bay Laboratory State Key Laboratory of Chemical Oncogeomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road 213164 Changzhou China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road 213164 Changzhou China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road 213164 Changzhou China
| | - Ping Chen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi) Shenzhen 518000 China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory State Key Laboratory of Chemical Oncogeomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road 213164 Changzhou China
| |
Collapse
|
13
|
Ping Y, Chang T, Wang J. Carbene insertion into acyl C-H bonds: Rh(III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Wang K, Liu Z, Xu G, Shao Y, Tang S, Chen P, Zhang X, Sun J. Chemo- and Enantioselective Insertion of Furyl Carbene into the N-H Bond of 2-Pyridones. Angew Chem Int Ed Engl 2021; 60:16942-16946. [PMID: 34038015 DOI: 10.1002/anie.202104708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Indexed: 01/09/2023]
Abstract
Asymmetric carbene insertion reactions represent one of the most important protocols to construct carbon-heteroatom bonds. The use of donor-acceptor diazo compounds bearing an ester group is however a prerequisite for achieving high enantioselectivity. Herein, we report a chemo- and enantioselective formal N-H insertion of 2-pyridones that has been accomplished for the first time with enynones as the donor-donor carbene precursors. DFT calculations indicate an unprecedented enantioselective 1,4-proton transfer from O to C. The rhodium catalyst provides a chiral pocket in which the steric repulsion and the π-π interaction of the propeller ligand play a critical role in determining the selectivities.
Collapse
Affiliation(s)
- Kai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ziye Liu
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ping Chen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen, 518000, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
15
|
Peng H, Zhang Y, Deng G, Deng H. Silver( i)-catalyzed tandem reaction of enynones and 4-alkynyl isoxazoles: regioselective synthesis of highly functionalized 4 H-furan[3,4- c]pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work reports a silver(i)-catalyzed tandem reaction of enynones with 4-alkynyl isoxazoles.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Hongmei Deng
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|