1
|
Liu DY, Fang DC. Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs Trigonal Bipyramidal. J Org Chem 2024; 89:14061-14072. [PMID: 39312811 DOI: 10.1021/acs.joc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Density functional theory was utilized to investigate the mechanism of Ru(II)-catalyzed aromatic C-H activation and addition of aromatic aldehydes. The proposed catalytic cycle consists of C-H bond activation, aldehyde carbonyl insertion for C-C coupling, lactonization for the formation of the final product, product separation, and catalyst recovery. Our calculations suggest that Ru(OAc)2(PCy3) (referred to as CAT) is the most favorable active catalyst, facilitating the C-H bond activation to form a five-membered ring cycloruthenium intermediate (INT2). Subsequently, the aromatic aldehyde reactant 2a enters the Ru coordination sphere, accelerating the C-C coupling and lactonization for the formation of the final product. The involvement of acetate assists in the final product separation, while INT1 re-enters the Ru coordination sphere to initiate a new catalytic cycle. Utilizing the energetic span model, the apparent activation free energy barrier was computed to be 34.3 kcal mol-1 at 443 K. Furthermore, exploration of the reaction mechanism in the absence of phosphine ligands identified Ru(OAc)2(p-cymene) as the most favorable active catalyst. The derived apparent activation free energy barrier offers a comprehensive explanation for the experimentally observed yields. Additionally, we have examined the disparities between the octahedral and trigonal bipyramidal structures of the catalysts concerning their effects on the reaction mechanisms and apparent activation free energy barriers.
Collapse
Affiliation(s)
- Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Liu SC, Fang DC. DFT Studies on the Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates. J Org Chem 2023; 88:14540-14549. [PMID: 37773964 DOI: 10.1021/acs.joc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Saiegh T, Meyer C, Cossy J. Rhodium(III)‐Catalyzed Heteroannulations of 3‐Sulfolene Derivatives via C(sp2)–H Activation. Access to Pyridine ortho‑Quinodimethane Precursors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Saiegh
- ESPCI Paris Molecular, Macromolecular Chemistry, and Materials FRANCE
| | - Christophe Meyer
- ESPCI Paris, CNRS, PSL Research University Laboratory of Organic Chemsitry 10 rue Vauquelin 75005 PARIS FRANCE
| | - Janine Cossy
- ESPCI: ESPCI Paris Molecular, Macromolecular Chemistry, and Materials PARIS FRANCE
| |
Collapse
|
4
|
Wang Q, Nie YH, Liu CX, Zhang WW, Wu ZJ, Gu Q, Zheng C, You SL. Rhodium(III)-Catalyzed Enantioselective C–H Activation/Annulation of Ferrocenecarboxamides with Internal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quannan Wang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Yu-Han Nie
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
5
|
Wu ZH, Fang DC. DFT study on ruthenium-catalyzed N-methylbenzamide-directed 1,4-addition of the ortho C–H bond to maleimide via C–H/C–C activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B3LYP-D3a+IDSCRF/tzp-dkh(-dfg) calculations indicate that CO as a directing group is much more favourable than the N–H group, and the real active catalyst is an ionic type with one [SbF6]− group.
Collapse
Affiliation(s)
- Zi-Hao Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Liu T, Han L, Zhang J, Lu G. Multiple Reaction Pathways of Eight-Membered Rhodacycles in Rh-Catalyzed Annulations of 2-Alkenyl Phenols/Anilides with Alkynes. J Org Chem 2021; 86:10484-10491. [PMID: 34313437 DOI: 10.1021/acs.joc.1c01143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Density functional theory calculations were performed to study the competing pathways of rhodacycle intermediates generated in Rh(III)-catalyzed annulations of 2-alkenyl phenols and 2-alkenyl anilides with alkynes. The results show that the multiple pathways of eight-membered rhodacycles can be subtly tuned to give specific cyclic products. The seven-membered oxacyclic and spirocyclic products from 2-alkenyl phenols are formed by favoring the pathway of dissociating the Rh-O bond of O-contained rhodacycles, which are followed by antarafacial nucleophilic attack. The indoline product from 2-alkenyl anilides is generated through the pathway of intramolecular olefin migratory insertion of the N-contained rhodacycle.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Lingli Han
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Jing Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
7
|
Xu H, Bian M, Zhou Z, Gao H, Yi W. Mechanistic Insights into the Dual Directing Group-Mediated C-H Functionalization/Annulation via a Hydroxyl Group-Assisted M III-M V-M III Pathway. ACS OMEGA 2021; 6:17642-17650. [PMID: 34278149 PMCID: PMC8280669 DOI: 10.1021/acsomega.1c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The experimental investigations on the catalyst [Cp*Rh(OAc)2 and Cp*Ir (OAc)2)]-controlled [3 + 2] and [4 + 2] annulations of oximes with propargyl alcohols have been finished in our previous work and a supposed dual directing group-mediated reaction pathway has been deduced for the chemodivergent product synthesis. However, the detailed interaction modes of the dual directing groups binding with the corresponding metal center to achieve the above observed chemoselectivity remain unclear and even contradict. For instance, the calculational traditional dual direct coupling transition states suggested that both Cp*Rh(OAc)2- and Cp*Ir(OAc)2-catalyzed reactions would generate five-membered indenamines as the dominant products via [3 + 2] annulation. To address this concern, herein, systematic DFT calculations combined with proof-of-concept experiments have been carried out. Accordingly, a novel and more favorable MIII-MV-MIII reaction mechanism, which involves an unprecedented HOAc together with a hydroxyl group-assisted reaction pathway in which the hydroxyl group acts as double effectors for the formation of M-O coordination and [MeO···H···O(CCH3)O···H···O] bonding interactions, was deduced. Taken together, the present results would provide a rational basis for future development of the dual directing group-mediated C-H activation reactions.
Collapse
Affiliation(s)
- Huiying Xu
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengyao Bian
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Zhou
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hui Gao
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yi
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
8
|
Xu M, Xia Y. Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|