1
|
Lu IC, Cheng KC, Wang YF, Pan CW, Hung JS, Mong KKT. Orthogonal Glycosylation with Phosphate Acceptors for Expeditious Synthesis of Bacterial Inner Core Oligosaccharides. Chem Asian J 2023; 18:e202300424. [PMID: 37339944 DOI: 10.1002/asia.202300424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
We report a practical one-pot glycosylation strategy for synthesis of bacterial inner core oligosaccharides that composed of unavailable L-glycero-D-manno and D-glycero-D-manno-heptopyranose components. The glycosylation method features a new orthogonal glycosylation procedure; whereby a phosphate acceptor is coupled with a thioglycosyl donor producing a disaccharide phosphate, which can be engaged in another orthogonal glycosylation procedure to couple with a thioglycosyl acceptor. The phosphate acceptors used in above one-pot procedure are directly prepared from thioglycosyl acceptors via the in-situ phosphorylation. Such phosphate acceptor preparation protocol eliminates the traditional protection and deprotection procedures. Based on the new one-pot glycosylation strategy, two partial inner core structures of Yersinia pestis lipopolysaccharide and Haemophilus ducreyi lipooligosaccharide were acquired.
Collapse
Affiliation(s)
- I-Chen Lu
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kuang-Chun Cheng
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Yi-Fang Wang
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Chia-Wei Pan
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Jan-Siang Hung
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| |
Collapse
|
2
|
Wang J, Feng Y, Sun T, Zhang Q, Chai Y. Photolabile 2-(2-Nitrophenyl)-propyloxycarbonyl (NPPOC) for Stereoselective Glycosylation and Its Application in Consecutive Assembly of Oligosaccharides. J Org Chem 2022; 87:3402-3421. [PMID: 35171610 DOI: 10.1021/acs.joc.1c03006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A photolabile protecting group (PPG) 2-(2-nitrophenyl)-propyloxycarbonyl (NPPOC) was explored in glycosylation and applied in the consecutive synthesis of oligosaccharides. NPPOC displays a strong neighboring group participation (NGP) effect to facilitate the construction of 1,2-trans glycosides in excellent yield. Notably, NPPOC could be efficiently removed by photolysis, and the deprotection conditions are friendly to typical protecting groups. A branched and asymmetric oligomannose Man6 was rapidly prepared, and the consecutive assembly of oligosaccharides without intermediate purification was further investigated owing to the compatibility conditions between NPPPOC's photolysis and glycosylation.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Taotao Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
3
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|