1
|
Sirijaraensre J. Exploring the catalytic performance of ligand-functionalized Cu-BTC paddlewheels in carboxylative cyclization of propargyl alcohol with CO 2: DFT and SISSO insights. J Mol Graph Model 2025; 138:109022. [PMID: 40127533 DOI: 10.1016/j.jmgm.2025.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
The M06-L functional with the 6-31G(d,p) and SDD ECP basis sets, was used to investigate the structure and electronic properties of defective linker-coordinated paddlewheel complexes (Cu-BTC(L1-L4)) in the catalytic conversion of propargyl alcohol (PA) and CO2 into cyclic carbonate. Two catalytic processes are proposed based on the different PA adsorption modes at the Cu center. The reaction proceeds via adsorption by the hydroxyl group in two sequential steps: PA/CO2 activation and cyclization. This pathway is proposed as the dominant process in the Cu-BTC and Cu-BTC(L1-L3) systems. However, only Cu-BTC(L3) and Cu-BTC(L4), which exhibit stronger electron back-donation compared to the other systems, effectively promote the catalytic process via PA adsorption through its alkyne bond. In this latter mode, the reaction proceeds through three consecutive steps: PA/CO2 activation, ring closure, and H-transfer. Compared to pristine Cu-BTC, Cu-BTC(L3) and Cu-BTC(L4) are proposed as more efficient catalysts for the carboxylative cycloaddition of CO2 with PA. The rate-determining step for the reaction on these two systems is the PA/CO2 activation via the latter mechanism. This step has an activation free energy of 16.7 kcal/mol and 15.0 kcal/mol for the Cu-BTC(L3) and Cu-BTC(L4). The SISSO model reveals the role of the Cu center in activating PA and stabilizing the generated intermediate, thereby lowering the activation free energy for PA/CO2 activation.
Collapse
Affiliation(s)
- Jakkapan Sirijaraensre
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food, and Agricultural Industries, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Yang F, Wang J, Wang Y, Yu B, Cao Y, Li J, Wu L, Huang J, Liu YN. Perfluoroalkyl-Decorated Noble-Metal-Free MOFs for the Highly Efficient One-Pot Four-Component Coupling between Aldehydes, Amines, Alkynes, and Flue Gas CO 2. Angew Chem Int Ed Engl 2024; 63:e202318115. [PMID: 38116913 DOI: 10.1002/anie.202318115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The non-noble-metal catalysed-multicomponent reactions between flue gas CO2 and cheap industrial raw stocks into high value-added fine chemicals is a promising manner for the ideal CO2 utilization route. To achieve this, the key fundamental challenge is the rational development of highly efficient and facile reaction pathway while establishing compatible catalytic system. Herein, through the stepwise solvent-assisted linker installation, post-synthetic fluorination and metalation, we report the construction of a series of perfluoroalkyl-decorated noble-metal-free metal-organic frameworks (MOFs) PCN-(BPY-CuI)-(TPDC-Fx ) [BPY=2,2'-bipyridine-5,5'-dicarboxylate, TPDC-NH2 =2'-amino-[1,1':4',1''-terphenyl]-4,4''-dicarboxylic acid] that can catalyze the one-pot four-component reaction between alkyne, aldehyde, amine and flue gas CO2 for the preparation of 2-oxazolidinones. Such assembly endows the MOFs with superhydrophobic microenvironment, superior water resistance and highly stable catalytic site, leading to 21 times higher turnover numbers than that of homogeneous counterparts. Mechanism investigation implied that the substrates can be efficiently enriched by the MOF wall and then the adsorbed amine species act as an extrinsic binding site towards dilute CO2 through their strong preferential formation to carbamate acid. Moreover, density functional theory calculations suggest the tetrahedral geometry of Cu in MOF offers special resistance towards amine poisoning, thus maintaining its high efficiency during the catalytic process.
Collapse
Affiliation(s)
- Fan Yang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Benling Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yiwen Cao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Linlin Wu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
3
|
Mirza-Aghayan M, Alizadeh M, Boukherroub R. Copper iodide nanoparticles supported on modified graphene-based nanocomposite catalyzed CO 2 conversion into oxazolidinone derivatives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119151-119167. [PMID: 37919493 DOI: 10.1007/s11356-023-30590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
We report on the preparation of copper iodide nanoparticles (NPs) immobilized on vitamin B3-modified graphene (CuI/GO-VB) nanocomposite and its application for the synthesis of oxazolidinone compounds using a remarkable carboxylative cyclization method via the reaction of arylacetylene, aldehyde and benzylamine derivatives under an atmospheric pressure of CO2 gas. The CuI/GO-VB catalyst was prepared from graphene oxide (GO), vitamin B3 (VB) and CuI using a two-step procedure; firstly graphene-based composite (GO-VB) was synthesized by the reaction of GO and nicotinoyl chloride, followed by the immobilization of CuI NPs on GO-VB. The CuI/GO-VB nanocomposite was fully identified with X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of the CuI/GO-VB heterogeneous catalyst was investigated in carboxylative cyclization for the synthesis of oxazolidinone compounds under an atmospheric pressure of CO2 gas at 100οC in solvent-, base-, and additive-free conditions; the corresponding oxazolidinone compounds were obtained in 79-94% yield. The hot filtration results indicated that CuI/GO-VB nanocomposite was a heterogeneous catalyst and showed a good reusability for 5 runs without a significant decrease in its catalytic performance.
Collapse
Affiliation(s)
- Maryam Mirza-Aghayan
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX, Tehran, 14335-186, Iran.
| | - Mahdi Alizadeh
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX, Tehran, 14335-186, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| |
Collapse
|
4
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
5
|
Han W, Liu F, Fujisawa K, Oriyama T. Mannich Reaction of α-Aminomaleimides with Imines. CHEM LETT 2021. [DOI: 10.1246/cl.210345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Han
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Fan Liu
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kiyoshi Fujisawa
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|