1
|
Raje S, Garhwal S, Młodzikowska-Pieńko K, Sheikh Mohammad T, Raphaeli R, Fridman N, Shimon LJW, Gershoni-Poranne R, de Ruiter G. N 2 Dissociation vs Reversible 1,2-Methyl Migration in PC NHCP Cobalt(I) Complexes in the Stereoselective Isomerization ( E/Z) of Allyl Ethers. JACS AU 2024; 4:4234-4248. [PMID: 39610742 PMCID: PMC11600169 DOI: 10.1021/jacsau.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/30/2024]
Abstract
With growing efforts pushing toward sustainable catalysis, using earth-abundant metals has become increasingly important. Here, we present the first examples of cobalt PCNHCP pincer complexes that demonstrate dual stereoselectivity for allyl ether isomerization. While the cationic cobalt complex [((PCNHCP)Co)2-μ-N2][BAr4 F]2 (3) mainly favors the Z-isomer of the enol ether, the corresponding methyl complex [(PCNHCP)CoMe] (4) mostly gives the E-isomer. The dichotomy in selectivity was investigated computationally, revealing important contributions from the substituents on the metal (N2 vs Me), including a 1,2-alkyl migration from cobalt to the N-heterocyclic carbene (NHC) of the methyl substituent, which is further explored in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Subhash Garhwal
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Katarzyna Młodzikowska-Pieńko
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Tofayel Sheikh Mohammad
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Ron Raphaeli
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Natalia Fridman
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
2
|
Shen LW, Luo N, Jia YQ, Wang GW, Yuan SP, Xiang M. Lewis base promoted [4 + 2] annulation of o-acylamino-aryl MBH carbonates with isatin. Org Biomol Chem 2024; 22:7961-7964. [PMID: 39263867 DOI: 10.1039/d4ob01240b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The first example of Lewis base promoted [4 + 2] annulation between o-acylamino-aryl MBH carbonates and isatin has been developed. This methodology exhibits excellent substrate applicability and has synthesized 1,4-dihydrospiro benzo[d][1,3]oxazine-oxindoles with yields up to 98%. The practical value of this method is underscored by its successful application in a 50-fold scale-up.
Collapse
Affiliation(s)
- Li-Wen Shen
- Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi 563002, China.
| | - Nian Luo
- Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi 563002, China.
| | - Yun-Qing Jia
- Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi 563002, China.
| | - Guang-Wei Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi 563002, China.
| | - Shu-Pei Yuan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi 710119, China
| | - Min Xiang
- Department of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi 563002, China.
| |
Collapse
|
3
|
Chang ASM, Kascoutas MA, Valentine QP, How KI, Thomas RM, Cook AK. Alkene Isomerization Using a Heterogeneous Nickel-Hydride Catalyst. J Am Chem Soc 2024; 146:15596-15608. [PMID: 38771258 DOI: 10.1021/jacs.4c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Transition metal-catalyzed alkene isomerization is an enabling technology used to install an alkene distal to its original site. Due to their well-defined structure, homogeneous catalysts can be fine-tuned to optimize reactivity, stereoselectivity, and positional selectivity, but they often suffer from instability and nonrecyclability. Heterogeneous catalysts are generally highly robust but continue to lack active-site specificity and are challenging to rationally improve through structural modification. Known single-site heterogeneous catalysts for alkene isomerization utilize precious metals and bespoke, expensive, and synthetically intense supports. Additionally, they generally have mediocre reactivity, inspiring us to develop a heterogeneous catalyst with an active site made from readily available compounds made of Earth-abundant elements. Previous work demonstrated that a very active homogeneous catalyst is formed upon protonation of Ni[P(OEt)3]4 by H2SO4, generating a [Ni-H]+ active site. This catalyst is incredibly active, but also decomposes readily, which severely limits its utility. Herein we show that by using a solid acid (sulfated zirconia, SZO300), not only is this decomposition prevented, but high activity is maintained, improved selectivity is achieved, and a broader scope of functional groups is tolerated. Preliminary mechanistic experiments suggest that the catalytic reaction likely goes through an intermolecular, two-electron pathway. A detailed kinetic study comparing the state-of-the-art Ni and Pd isomerization catalysts reveals that the highest activity and selectivity is seen with the Ni/SZO300 system. The reactivity of Ni/SZO300, is not limited to alkene isomerization; it is also a competent catalyst for hydroalkenylation, hydroboration, and hydrosilylation, demonstrating the broad application of this heterogeneous catalyst.
Collapse
Affiliation(s)
- Alison Sy-Min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Melanie A Kascoutas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Quinn P Valentine
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiera I How
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Rachel M Thomas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
4
|
Shui L, Liu F, Wang X, Ma C, Qiang Q, Shen M, Fang Y, Ni SF, Rong ZQ. Ligand-Induced chemodivergent nickel-catalyzed annulations via tandem isomerization/esterification and direct O-allylic substitution: Divergent access to 3,4-dihydrocoumarins and 2H-chromenes. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Kim YH, Kim DB, Youn SW. Simple Tandem Olefin Isomerization/Intramolecular Hydroamination of Alkenyl Amines with Various Allylic Tethers. J Org Chem 2022; 87:11919-11924. [PMID: 36001369 DOI: 10.1021/acs.joc.2c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and efficient AgOTf-promoted tandem olefin isomerization/intramolecular hydroamination of 1,1-disubstituted alkenyl amines has been developed. This one-pot process represents a facile and attractive route for the synthesis of diverse 2-alkyl-substituted 1,3-X,N-heterocycles through chemo- and regioselective C(sp3)-N bond formation with atom economy. Advantages such as the operationally simple and practical procedure that uses a readily available catalyst under aerobic conditions, good to excellent chemical yields, the high functional group tolerance, the broad substrate scope, and high efficiency and selectivity are noteworthy.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dong Bin Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Kawamura KE, Chang ASM, Martin DJ, Smith HM, Morris PT, Cook AK. Modular Ni(0)/Silane Catalytic System for the Isomerization of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Daryl J. Martin
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Haley M. Smith
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Parker T. Morris
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| |
Collapse
|
7
|
Ghosh S, Patel S, Chatterjee I. Chain-walking reactions of transition metals for remote C-H bond functionalization of olefinic substrates. Chem Commun (Camb) 2021; 57:11110-11130. [PMID: 34611681 DOI: 10.1039/d1cc04370f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Past several decades have witnessed the great evolution of inert C-H bond functionalization reactions as an emerging technique for synthesizing drug molecules, agrochemicals, and functional materials with intricate three-dimensional architectures. Although most activation of "unreactive" C-H bonds was accomplished by exploiting the power of transition metal catalysts, the distant and selective activation of unreactive C-H bonds in an undirected fashion remains one of the critical challenges to this rapidly growing field of organic chemistry. In this context, to meet all these concerns, much more attractive and challenging transition metal catalytic transformations have begun to blossom in recent years with the aid of the chain-walking process. The chain-walking strategy is one of the state-of-the-art techniques in organic synthesis to functionalize the unreactive C-H bonds by allowing the movement of a metal complex along the hydrocarbon chain of the substrate to recognize preferable bond-forming sites. The essential advantage of this strategy is that the bonds are formed only at the places where the catalyst selects for the specific C-H bonds to be cleaved, which not only avoids tedious synthetic procedures for prefunctionalization and the emission of undesirable wastes but also inspires chemists to plan novel synthetic strategies in a completely different manner. Consequently, various C-H bond functionalization reactions have been reported in recent years, employing the vast opportunity provided by this growing field mainly for the acyclic olefinic systems with flexible alkyl chains. Thus, chain-walking reactions allow the reactivity of the reaction centers within the substrates that cannot be realized via the classical mode of reactivity of the substrates. Applying this approach, inexpensive feedstock materials and simple hydrocarbons as an isomeric mixture can be converted to a single isomeric product in a regioconvergent scenario. Simultaneously, the site-selectivity of these reactions can also be switched using a regiodivergent strategy via appropriate tuning of ligands or a slight modification of reaction conditions. Herein, we have provided a comprehensive overview of the chain-walking reactions involving a variety of catalytic systems ranging from the first-row transition metal catalysts to the third-row transition metal catalysts for C-H activation in a concise fashion with the hope for further developments in this area through the appropriate application of the chain-walking reactions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
8
|
Ding L, Niu YN, Xia XF. Pd-Catalyzed Tandem Isomerization/Cyclization for the Synthesis of Aromatic Oxazaheterocycles and Pyrido[3,4- b]indoles. J Org Chem 2021; 86:10032-10042. [PMID: 34279106 DOI: 10.1021/acs.joc.1c00770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An effient tandem process consisting of palladium-catalyzed double-bond isomerization of long-chain olefins and subsequent intramolecular cyclization promoted by B2(OH)2 for the synthesis of aromatic oxazaheterocycles is disclosed. This strategy can also provide rapid access to pyrido[3,4-b]indoles, trans-2-olefins, and eneamides bearing various functional groups with high regio- and stereoselectivity.
Collapse
Affiliation(s)
- Linglong Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu 223003, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China
| |
Collapse
|
9
|
Berkefeld A, Fleischer I, Kathe PM. Nickel Hydride Catalyzed Cleavage of Allyl Ethers Induced by Isomerization. Synlett 2021. [DOI: 10.1055/s-0040-1706683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThis report discloses the deallylation of O- and N-allyl functional groups by using a combination of a Ni-H precatalyst and excess Brønsted acid. Key steps are the isomerization of the O- or N-allyl group through Ni-catalyzed double-bond migration followed by Brønsted acid induced O/N–C bond hydrolysis. A variety of functional groups are tolerated in this protocol, highlighting its synthetic value.
Collapse
Affiliation(s)
- Andreas Berkefeld
- Institute of Inorganic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen
| | - Ivana Fleischer
- Institute of Organic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen
| | - Prasad M. Kathe
- Institute of Organic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen
| |
Collapse
|