1
|
Xie TP, Ren Z, Zhang ZT, Xie F, Xia DD, Gao YH, Yin M, Zhou H, Ding ZT. Nathmorinones A and B, two naphthyl cyclothiomorphone from Amycolatopsis sp. YINM00005. Fitoterapia 2025; 183:106574. [PMID: 40328373 DOI: 10.1016/j.fitote.2025.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Atypical actinomycetes have long been esteemed as a precious microbial resource, renowned for their capability to produce an extensive array of bioactive natural products. Two polycyclic naphthyl cyclothiomorphone, nathmorinones A (1) and B (2), were isolated from Amycolatopsis sp. YINM00005 associated with Peperomia dindygulensis Miq. Their structures, featuring a tricyclic framework with a naphthalene ring and a thiomorphine scaffold, were elucidated through extensive analysis of NMR spectra, HRESIMS data, and further confirmed by single-crystal X-ray diffraction experiments. Compound 2 exhibited moderate cytotoxic activities against SMMC-7721 and SW480 with IC50 values of 13.65 ± 0.30 and 17.82 ± 0.30 μM, respectively. Hypothetical biosynthetic pathways for 1 and 2 were proposed.
Collapse
Affiliation(s)
- Tian-Peng Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China
| | - Zhen Ren
- School of Agriculture and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Zhou-Tianle Zhang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China
| | - Fei Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China
| | - Dan-Dan Xia
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China
| | - Yu-Hong Gao
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming 650032, PR China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming 650504, PR China.
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China.
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650504, PR China; Yunnan University of Chinese Medicine, Kunming 650504, PR China.
| |
Collapse
|
2
|
Shen Y, Ding N, Gu L, Yu M, Li Q, Sun W, Chen C, Zhang Y, Zhu H. Maydisens, Sesterterpenoids with Anti-MDR Activity from Bipolaris maydis. JOURNAL OF NATURAL PRODUCTS 2024; 87:2408-2420. [PMID: 39356676 DOI: 10.1021/acs.jnatprod.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Fourteen previously undescribed sesterterpenoids (1-14) were isolated from Bipolaris maydis. Their structures with absolute configurations were elucidated by NMR, HRESIMS, DP4+ calculations, ECD calculations, single-crystal X-ray diffraction analyses, and the modified Mosher's method. Compounds 1-5 possess an uncommon 5/11 bicyclic ring system identified from B. maydis for the first time. Compounds 6-14 have a 5/8/5 tricyclic ring system, and these compounds both possess carbonyl groups in ring A. Compound 10 showed significant reversal of paclitaxel resistance in cancer cells.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mengru Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
3
|
Li H, Fu Y, Song F, Xu X. Recent Updates on the Antimicrobial Compounds from Marine-Derived Penicillium fungi. Chem Biodivers 2023; 20:e202301278. [PMID: 37877324 DOI: 10.1002/cbdv.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In this review, 72 compounds isolated from marine-derived Penicillium fungi and their antimicrobial activities are reviewed from 2020 to 2023. According to their structures, these compounds can be divided into terpenoids, polyketides, alkaloids and other structural compounds, among which terpenoids and polyketides are relatively large in number. Some compounds have powerful inhibitory effects against different pathogenic bacteria and fungi. This review aims to provide more useful information and enlightenment for further efficient utilization of Penicillium spp. and their secondary metabolites.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Yanqi Fu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 100083, Beijing, P. R. China
| |
Collapse
|
4
|
Mo S, Huang Z, Ye Z, Yin J, Zhang S, Yao J, Zhang Y, Huang Z, Zeng H, Hu Z, Wang J, Zhang Y. Ten undescribed eremophilane and guaiane sesquiterpenes from Penicillium roqueforti. PHYTOCHEMISTRY 2023:113722. [PMID: 37230212 DOI: 10.1016/j.phytochem.2023.113722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Nine undescribed eremophilane sesquiterpenes, one undescribed guaiane sesquiterpene, along with ten known analogues were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of Hypericum beanii N. Robson collected from the Shennongjia Forestry District, Hubei Province. Their structures were elucidated on the basis of various spectroscopic analyses, mainly including NMR and HRESIMS data, 13C NMR calculation with DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, all twenty compounds were evaluated for the in vitro cytotoxic activities against seven human tumor cell lines, and the result suggested that 14-hydroxymethylene-1(10)-ene-epi-guaidiol A exhibited considerable cytotoxic activity against the Farage (IC50 < 10 μM, 48 h), SU-DHL-2, and HL-60 cells. Further mechanism study demonstrated that 14-hydroxymethylene-1(10)-ene-epi-guaidiol A could significantly promote apoptosis by inhibiting tumor cell respiration and decreasing intracellular ROS levels, thereby inducing S-phase blockade in tumor cells.
Collapse
Affiliation(s)
- Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhangyan Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jun Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yaxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhihong Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Feng L, Wang XJ, Li L, Zhang AX, Shang RR, Tan NH, Wang Z. Identification of meroterpenoids from Bipolaris victoriae S27 and their potential activity against tumor metastasis and inhibition of the NF-κB signaling pathway. PHYTOCHEMISTRY 2022; 200:113180. [PMID: 35427653 DOI: 10.1016/j.phytochem.2022.113180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Three undescribed meroterpenoids, named bipolacochlioquinones A-C, together with seven known compounds, were isolated from the plant endophytic fungus Bipolaris victoriae S27 derived from the fresh stems of Rubia podantha Diels. Their structures were mainly determined by extensive spectroscopic analysis. The relative configurations of bipolacochlioquinones A-C were assigned using the ROESY spectrum, comparison of their spectral data with that reported in the literatures, and NMR calculations. Moreover, their complete absolute configurations were further established by electronic circular dichroism calculations using density functional theory. Among them, bipolacochlioquinone A is found to represent the first example of previously undescribed 6/6/6/6/6 pentacyclic dioxane-containing cochlioquinones, and bipolacochlioquinone B possesses a rare 6/6/6/6/5 pentacyclic system bearing a tetrahydrofuran ring fused to a polyketide and a sesquiterpenoid subunit. All compounds were evaluated for their inhibitory effects on tumor growth, metastasis, and the NF-κB signaling pathway. Among them, bipolacochlioquinone C and cochlioquinone A show the most potent cytotoxicities and NF-κB inhibitory activities. The effects of bipolacochlioquinone C and cochlioquinone A on the expression of NF-κB-associated proteins were also evaluated using western blotting. These results indicate that bipolacochlioquinone C and cochlioquinone A can inhibit the growth and metastasis of HCT116 and MDA-MB-231 cells by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xin-Jia Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ling Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - An-Xin Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ran-Ran Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ning-Hua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhe Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
6
|
Zhang S, Mo S, Li F, Zhang Y, Wang J, Hu Z, Zhang Y. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:27. [PMID: 35864424 PMCID: PMC9304466 DOI: 10.1007/s13659-022-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Soil-derived fungi represent an insufficiently tapped reservoir for discovering new and bioactive natural products (NPs), and despite an ever-increasing number of unknown NPs have been discovered over the past few decades, much of the hidden biosynthetic potential is still in an urgent need to be disclosed. In this research, a chemical investigation was performed on a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05, leading to the isolation of a total of fourteen drimane sesquiterpenoids (1-14), incorporating three new ones, namely ustusols F-H (1-3). Their structures, comprising absolute configurations, were completely authenticated by widespread spectroscopic data, quantum chemical 13C NMR and ECD calculations, and X-ray crystallography experiments. Compound 14 exhibited moderate anti-inflammatory activity by inhibiting the LPS-induced NO release (IC50 = 25.6 μM).
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Li F, Mo S, Yin J, Zhang S, Gu S, Ye Z, Wang J, Hu Z, Zhang Y. Structurally diverse metabolites from a soil-derived fungus Aspergillus calidoustus. Bioorg Chem 2022; 127:105988. [DOI: 10.1016/j.bioorg.2022.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|
8
|
Liu M, Gu L, Shen L, Zhang X, Lin S, Ye Y, Wang J, Hu Z, Zhang Y. Bipolaquinones A-J, Immunosuppressive Meroterpenoids from a Soil-Derived Bipolaris zeicola. JOURNAL OF NATURAL PRODUCTS 2021; 84:2427-2436. [PMID: 34469134 DOI: 10.1021/acs.jnatprod.1c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ten new meroterpenoids, bipolaquinones A-J (1-10), and one known congener, isocochlioquinone F (11), were isolated and identified from the fermented rice cultures of a soil-derived fungus, Bipolaris zeicola. The planar structures of 1-10 were elucidated based on extensive spectroscopic analyses (including HRESIMS and 1D and 2D NMR data), and their absolute configurations were determined by single-crystal X-ray diffraction analyses, comparison of experimental electronic circular dichroism (ECD) data, ECD calculations, and hydrolysis reaction. The immunosuppressive activity assay revealed that compounds 2, 3, and 7-10 showed significant inhibitory activity against concanavalin A (ConA)-induced T lymphocyte proliferation with IC50 values ranging from 4.1 to 9.4 μM, which furnished potential lead molecules for the design and development of new immunosuppressants for treating autoimmune-associated diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
9
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorahupetone A from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|