1
|
Yadav Y, Singh K, Tyagi R, Sagar R. Organobase-catalyzed efficient synthesis of 4-acyl-5-aryl tri-substituted triazole linked N-glycosides as glycohybrids. Org Biomol Chem 2025; 23:2904-2917. [PMID: 39989371 DOI: 10.1039/d4ob01971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Herein, we report a highly efficient organobase-catalyzed method for the synthesis of fully decorated chiral 4-acyl-5-aryl-trisubstituted-1,2,3-triazole-linked N-glycosidic molecular scaffolds as glycohybrids. This process involves a base-catalyzed 1,3 dipolar cycloaddition reaction, where β-ketoesters react with various glycosyl azides in dimethyl sulfoxide at room temperature, furnishing new glycohybrids in good to excellent yields. This intermolecular reaction is metal-free, exceptionally efficient, versatile, and high-yielding, with a broad substrate scope and remarkable regioselectivity.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Gorachand B, Lakshmi PR, Ramachary DB. Direct organocatalytic chemoselective synthesis of pharmaceutically active benzothiazole/benzoxazole-triazoles. Org Biomol Chem 2025; 23:2142-2152. [PMID: 39849920 DOI: 10.1039/d4ob01527d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Pandhiti R Lakshmi
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | | |
Collapse
|
3
|
Da Costa GP, Sacramento M, Barcellos AM, Alves D. Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines. CHEM REC 2024; 24:e202400107. [PMID: 39413121 DOI: 10.1002/tcr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
Collapse
Affiliation(s)
- Gabriel P Da Costa
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Pesquisa em Síntese Orgânica Sustentável-PSOS, Universidade Federal do Rio Grande-FURG, Escola de Química e Alimentos-EQA, Av. Itália km 8, s/n-Campus Carreiros, 96.203-900, Rio Grande, RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
4
|
Gorachand B, Surendra Reddy G, Ramachary DB. Direct Organocatalytic Chemoselective Synthesis of Pharmaceutically Active 1,2,3-Triazoles and 4,5'-Bitriazoles. ACS ORGANIC & INORGANIC AU 2024; 4:534-544. [PMID: 39371323 PMCID: PMC11450731 DOI: 10.1021/acsorginorgau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/08/2024]
Abstract
Carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles are well-known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free synthesis has always remained challenging, as no comprehensive protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles and unsymmetrical 4,5'-bitriazoles with high yields and chemo-/regioselectivity from the library of 2,4-diketoesters and azides in a sequential one-pot manner through the combination of organocatalytic enolization, in situ [3 + 2]-cycloaddition, and hydrolysis reactions. The commercial availability of the starting materials/catalysts, diverse substrate scope, performance in a one-pot manner, chemo-/regioselectivity of organo-click reaction, quick synthesis of unsymmetrical 4,5'-bitriazoles, a large number of synthetic applications, and numerous medicinal applications of carbonyl-containing 1,2,3-triazoles are the key attractions of this metal-free organo-click work.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | - Gundam Surendra Reddy
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | | |
Collapse
|
5
|
Ajormal F, Bikas R, Ghasemzadeh H, Noshiranzadeh N, Kozakiewicz-Piekarz A. Green and recyclable catalyst based on chitosan/CuFe 2O 4 nanocomposite hydrogel for one-step synthesis of 1,2,3-triazoles. RSC Adv 2024; 14:31320-31331. [PMID: 39359334 PMCID: PMC11443811 DOI: 10.1039/d4ra05626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The scope of the heterogeneous catalysts has been greatly expanded in last few decades by the development of various catalysts. In this work a new chitosan-based nanocomposite hydrogel (CS/CuFe2O4 NCH) was synthesized as a high-performance heterogeneous catalyst and then, it was utilized for the green synthesis of substituted 1,2,3-triazoles by a multi-component (azide-alkyne-epoxide) cycloaddition reaction. The synthesized nanocomposite hydrogel was investigated by using various instrumental analyses, including FT-IR, XRD, SEM, EDS, HRTEM, DLS, and TGA. The structure of one of the substituted 1,2,3-triazoles was studied by using single-crystal X-ray diffraction analysis. The nanocomposite hydrogel can be easily regenerate after the catalytic reaction. It can be reused frequently without considerable loss of activity. The high catalytic activity, straightforward reaction, easy recyclability, short reaction time, use of a green solvent, and the simple separation of catalyst are the main advantage of the current method, which offers both financial and environmental benefits.
Collapse
Affiliation(s)
- Fatemeh Ajormal
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Hossein Ghasemzadeh
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun Torun 87-100 Poland
| |
Collapse
|
6
|
Kumar V, Bhukal A, Raman APS, Singh P, Lal K. Synthesis, Characterization, Antimicrobial and In Silico Studies of Isatin Schiff Base Linked 1,2,3-Triazole Hybrids. Chem Biodivers 2024; 21:e202400569. [PMID: 38770783 DOI: 10.1002/cbdv.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
A new series of isatin-Schiff base linked 1,2,3-triazole hybrids has been synthesized using CuAAC approach from (E)-3-(phenylimino)-1-(prop-2-yn-1-yl)indolin-2-one derivatives in high yield (73-91 %). These synthesized derivatives were characterized using FT-IR, 1H NMR, 13C NMR, 2D-NMR and HRMS spectral techniques. The in vitro antimicrobial activity assay demonstrated that most of the tested hybrids exhibited promising activity. Compound 5 j displayed significant antibacterial efficacy against P. aeruginosa and B. subtilis with MIC value of 0.0062 μmol/mL. While, 5 j also showed better antifungal potency against A. niger with MIC value of 0.0123 μmol/mL. The docking studies of most promising compounds were performed with the well-known antibacterial and antifungal targets i. e. 1KZ1, 5TZ1. Molecular modelling investigations demonstrated that hybrids 5 h and 5 l exhibited good interactions with 1KZN and 5TZ1, with binding energies of -9.6 and -11.0 kcal/mol, respectively. Further, molecular dynamics studies of the compounds showing promising binding interactions were also carried out to study the stability of complexes of these hybrids with both the targets.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Akanksha Bhukal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | | | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
7
|
Peng L, Zhao Y, Okuda Y, Le L, Tang Z, Yin SF, Qiu R, Orita A. Process-Divergent Syntheses of 4- and 5-Sulfur-Functionalized 1,2,3-Triazoles via Copper-Catalyzed Azide-Alkyne Cycloadditions of 1-Phosphinyl-2-sulfanylethynes. J Org Chem 2023. [PMID: 36763008 DOI: 10.1021/acs.joc.2c02876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yasuhiro Okuda
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Akihiro Orita
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
8
|
1,3‐Dipolar Cycloaddition of Alkanone Enolates with Azides in Deep Eutectic Solvents for the Metal‐free Regioselective Synthesis of Densely Functionalized 1,2,3‐Triazoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
1,3-Phenylene-based symmetrical bis(urea-1,2,3-triazole) hybrids: Synthesis, antimicrobial and in silico studies as 14α-sterol demethylase inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Chalcone Appended Organosilanes and their Silica Nanoparticles Based UV-vis and Fluorometric Probes for Co2+ ions Detection. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Singh S, Trivedi L, Vasudev PG, Passarella D, Negi AS. An Efficient Merging of DBU/Enolate and DBU/Benzyl Bromide Organocycles for the Synthesis of alpha Benzylated1-Indanone Derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merging of dual organocycles of the bicyclic amidine base 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) was demonstrated for the synthesis of alpha benzylated 1-indanones. A highly reactive enolate intermediate was formed in the...
Collapse
|
12
|
Jannapu Reddy R, Waheed M, Haritha Kumari A, Rama Krishna G. Interrupted CuAAC‐Thiolation for the Construction of 1,2,3‐Triazole‐Fused Eight‐Membered Heterocycles from
O
‐/
N
‐Propargyl derived Benzyl Thiosulfonates with Organic Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | - Md. Waheed
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | | |
Collapse
|
13
|
Abstract
1,2,3-triazoles represent a functional heterocyclic core that has been at the center of modern organic chemistry since the beginning of click chemistry. Being a versatile framework, such an aromatic ring can be observed in uncountable molecules useful in medicine and photochemistry, just to name a few. This review summarizes the progress achieved in their synthesis from 2015 to today, with particular emphasis on the development of new catalytic and eco-compatible approaches. In doing so, we subdivided the report based on their degree of functionalization and, for each subparagraph, we outlined the role of the catalyst employed.
Collapse
|
14
|
Vroemans R, Ribone SR, Thomas J, Van Meervelt L, Ollevier T, Dehaen W. Synthesis of homochiral sulfanyl- and sulfoxide-substituted naphthyltriazoles and study of the conformational stability. Org Biomol Chem 2021; 19:6521-6526. [PMID: 34254109 DOI: 10.1039/d1ob00784j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of novel homochiral atropisomeric sulfanyl- and sulfoxide-substituted naphthyltriazoles is described. The triazolization methodology used presents a new way towards novel and highly stable 1,2,3-triazole-based atropisomers, and introduces a new and complementary synthetic pathway towards 4-sulfanyl substituted 1,2,3-triazoles. Starting from sulfanyl-substituted naphthyl ketones, enantiopure amines, and 4-nitrophenyl azide, a collection of 16 sulfanyl-substituted naphthyltriazoles were obtained via the triazolization reaction in which the homochiral diastereomers are readily isolated. Subsequent monooxidation results in the preparation of several sulfoxide-substituted naphthyltriazoles. The absolute configuration of a set of diastereomeric sulfanyl- and sulfoxide-appended naphthyltriazoles was deduced via X-ray crystallography. Furthermore, the conformational stability of the atropisomers was determined experimentally, and further confirmed and analyzed with the aid of computational DFT calculations.
Collapse
Affiliation(s)
- Robby Vroemans
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Sergio R Ribone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Ciencias Farmacéuticas, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Joice Thomas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Thierry Ollevier
- Département de chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
15
|
Cui X, Zhang X, Wang W, Zhong X, Tan Y, Wang Y, Zhang J, Li Y, Wang X. Regitz Diazo Transfer Reaction for the Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles and Subsequent Regiospecific Construction of 1,4-Disubstituted 1,2,3-Triazoles via C-C Bond Cleavage. J Org Chem 2021; 86:4071-4080. [PMID: 33620225 DOI: 10.1021/acs.joc.0c02912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward and efficient methodology has been developed for the synthesis of 1,4,5-trisubstituted dicarbonyl 1,2,3-triazoles and 1,4-disubstituted sole-carbonyl 1,2,3-triazoles via a C-C bond cleavage process. The Regitz diazo transfer and C-C bond cleavage were the key steps of this transformation, which provided diverse carbonyl-substituted structural 1,2,3-triazoles. This reaction featured with excellent regioselectivity, wide functional group tolerance, and mild conditions.
Collapse
Affiliation(s)
- Xue Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Xueying Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Wei Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Xia Zhong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Jianlan Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| |
Collapse
|
16
|
Opsomer T, Dehaen W. Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun (Camb) 2021; 57:1568-1590. [PMID: 33491711 DOI: 10.1039/d0cc06654k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of the latest developments in the metal-free synthesis of non-benzo-fused N-functionalized and NH-1,2,3-triazoles is provided in this feature article. Synthetic studies that appeared from 2016 until August 2020 are organized according to a wide-ranging classification, comprising oxidative and eliminative azide-dipolarophile cycloadditions, diazo transfer reactions and N-tosylhydrazone-mediated syntheses. The newly developed methods constitute a significant contribution to the field of 1,2,3-triazole synthesis in terms of structural variation via either the exploration of novel reactions, or the exploitation of existing methodologies.
Collapse
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | |
Collapse
|